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AN ADAPTIVE FRAMEWORK FOR ENERGY-EFFICIENT EDGE AI:

FROM CLASSIFICATION TO SYNTHESIS OF

IMAGES AND 3D SHAPES

Abstract

by Kannappan Jayakodi Nitthilan, Ph.D.
Washington State University

December 2022

Chair: Janardhan Rao Doppa

A large number of real-time artificial intelligence (AI) applications including robotics,

self-driving cars, smart health and augmented (AR) / virtual reality (VR) are en-

hanced/boosted by deploying deep neural networks (DNNs). Currently, computation

for most of these applications happens on the cloud due to huge compute, energy,

and memory requirements. However, moving these applications to the edge platforms

such as smartphones and AR/VR headsets reduce latency and improves user experi-

ence, accessibility, and data privacy. Existing solutions utilize high-performance and

energy-efficient hardware accelerators and software solutions including sparsity and

quantization of weights with a potential compromise on the prediction accuracy.
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This dissertation proposes an adaptive framework for energy-efficient edge AI

which complements all the previous solutions enhancing the performance on edge

devices. We utilize the intuitive idea that easy inputs require simple networks and

hard inputs require complex networks. This framework is based on three key ideas.

First, we design and train a space of DNNs of increasing complexity (coarse to fine).

Second, we perform an input-specific adaptive inference by selecting a DNN of appro-

priate complexity depending on the hardness of input examples. Third, we execute

the selected DNN on the target edge platform using a resource management policy

to save energy. We demonstrate the generalization of the proposed solution for three

qualitatively different problem settings ranging from convolutional neural networks

(CNNs) for simple image classification to structured generative adversarial networks

(GANs) for photo-realistic unconditional image generation and graph convolutional

networks (GCNs) for 3D shape synthesis. Our experiments on real-world applica-

tions on edge platforms demonstrate a significant reduction in energy and latency

with little to no loss in prediction accuracy.
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CHAPTER 1. INTRODUCTION

On one hand, we are witnessing an exponential growth of emerging edge appli-

cations enabled by the growth of powerful hardware platforms in small-form factors.

Some prototypical examples of edge platforms [52] include mobiles, Internet of Things

(IoT), wearables, robotics, AR/VR headsets, surveillance cameras, self-driving cars,

and drones. On the other hand, we are also seeing the rise of data-driven AI appli-

cations based on deep neural networks (DNNs) trained from large scale data (e.g.,

text, images, speech, and sensor data). DNNs — a set of computational techniques

to automatically extract patterns and useful features from raw data — achieve high

prediction accuracy, but their large size makes them computationally expensive, con-

suming a lot of energy and memory. However, edge devices are inherently constrained

by limited battery life, low compute resources, and small memory footprint. Edge

AI is a sub-area of artificial intelligence (AI) that tries to bridge low-compute edge

platforms with the complex DNN solutions.

Currently, most of the computation for these edge applications happens in the

cloud, but there are many good reasons to perform this computation locally on edge

platforms. First, it will increase the accessibility of AI applications to different parts

of the world by reducing the dependence on the communication fabric and the cloud

infrastructure. Second, many of these applications such as robotics and AR/VR re-

quire low latency. We may not be able to achieve their critical real-time requirements
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without performing the computation directly on the edge platform. Third, for many

important applications such as mobile health, privacy and security are important con-

cerns (e.g., medical data). By doing the inference on edge devices we avoid sharing

data on the cloud. Since edge platforms are constrained by resources (power, com-

putation, and memory), there is a great need for innovative solutions to realize the

vision of practically useful Edge AI [52].

There is a growing body of literature to addresses the challenges to create energy-

efficient Edge AI. These approaches include designing high-performance and energy-

efficient hardware accelerators to perform DNN inference [18, 47, 19]. Important

software methods include: reduced precision of weights and activations [85]; binary

weights [22] and its variations like LightNN [33]; pruning and compression of large

DNNs [51, 116]; exploiting sparsity of DNN models [18]; design of DNNs to reduce

the computation and model size (e.g., MobileNet and SqueezeNet) and slimmable

neural networks to allow varying number of channels for inference [118]. There are

also simple hand-designed approaches to perform incremental/adaptive inference with

CNNs for classification [95, 92, 111, 83]. One key limitation of the prior work is that

all these approaches focus on the simple classification tasks. There are many edge

AI applications such as AR/VR that involve predicting structured outputs (e.g., 3D

shapes from color images). The structured output prediction problem is challenging

due to the huge space of outputs for any given input. Further in these approaches
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the inference for every input example is made using a “fixed” computational process.

They do not exploit the fact that hardness of inference varies from one example to

another.

This dissertation proposes a general adaptive inference framework for energy-

efficient edge AI which is applicable for both simple classification and complex struc-

tured output prediction tasks. The overall principle behind this framework is to be

adaptive about 1) what to compute, and 2) how to compute on a target edge platform

to save energy with little to no loss in accuracy. To address the challenge of what to

compute, we exploit the fact that hardness of DNN inference varies from one input ex-

ample to another. For example, we use simpler convolutional neural network (CNN)

for simple images and complex CNN for harder images. Similarly, we use appropriate

graph convolution network (GCN) to produce a 3D object shape in the form of a

triangular mesh. Fig 1.1 illustrates this conceptual idea. To practically realize this

approach, we automatically design a space of DNNs of increasing complexity from a

given DNN architecture to allow reuse of computation from lower-levels to perform

incremental computation at higher-levels. To perform input-specific adaptive DNN

inference, we use some learnable parameters (one threshold for each level). To address

the challenge of how to compute, we use data-driven runtime resource management

techniques [87, 88, 26] to fully exploit the capabilities of the target hardware platform

(e.g., ARM Big-Little architecture) to run any selected DNN for saving energy. The
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Figure 1.1: Example images to illustrate “easy” and “hard” inference problems.

Left Two: CNN based image classification,

Right Two: GCNs for producing 3D shapes with low and high polycount.

overall effectiveness of the co-design framework critically depends on the threshold

parameters for different levels. Therefore, we use multi-objective Bayesian optimiza-

tion (BO) algorithms [11, 12, 7, 122, 10] to configure the threshold parameters to

achieve different trade-offs between accuracy, energy, and latency.

We provide three concrete instantiations of our proposed framework for CNN

based adaptive inference for image classification, GCN based adaptive inference for

producing 3D object shapes from color images to enable AR/VR applications, and

GAN based adaptive inference for photo-realistic unconditional image generation

(generate high-quality and diverse images with same visual content as the input

image). Experiments on real-world datasets and a commercial hardware platform

show the effectiveness of our adaptive inference framework for edge AI in achieving

significant reduction in energy and execution time with little to no loss in prediction
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accuracy. We also list some future directions to push the boundaries of energy-efficient

edge AI.

1.1 Technical Contributions

The main contribution of this dissertation is a general adaptive inference frame-

work for energy-efficient edge AI for solving both classification and structured out-

put prediction tasks. We provide effective instantiations of this framework for CNN

based classification, GCN based 3D shape synthesis and GAN based image synthe-

sis. However, for some deep learning models where the data flow is not linear (e.g.,

transformers), our framework may not be directly applicable and will require some

changes to incorporateadaptability. Below we first provide a high-level overview of

our adaptive inference framework and then describe the details of the key elements

of the framework.

Overview of Adaptive Framework for Energy Efficient Edge AI. The frame-

work tries to synergistically combine the structure in the DNN software program and

benefits provided by the target hardware platform to perform adaptive inference op-

timized for each input example. One key advantage of this framework is that it is

complementary to existing software approaches such as quantization, pruning, and

knowledge distillation (can leverage the output network from these methods to fur-

ther improve adaptive inference) and hardware approaches (can leverage to improve
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performance and energy-efficiency of inference).

While the state-of-the-art DNNs achieve very high accuracy, they are highly com-

plex (deep) and consume a significant amount of energy. On the other hand, simple

(shallow) networks have poor accuracy but are very energy-efficient. Our motivation

is based on the fact that many input examples are easy and can be predicted correctly

using simple DNNs and only a small fraction of hard inputs would need complex DNNs

(illustrated in Figure 1.1). Furthermore, we observe that as we move from simple to

complex DNNs, for small improvements of accuracy there is a significant growth in

energy consumption, corroborating our hypothesis. Therefore, our goal is automat-

ically select simple networks for easy inputs and complex networks for hard inputs.

This mechanism will allow us to achieve high accuracy with significantly less energy

consumption when compared to the baseline approach, where we make predictions

for all input examples using the most complex DNN. After selecting the appropriate

DNN for a given input example, we use an optimized resource management policy

to execute the selected DNN on the target hardware platform to save energy. The

effectiveness of the overall framework depends on the learnable parameters that se-

lect the appropriate complexity of the DNN model. We use a Bayesian optimization

methodology to configure these parameters to trade-off objectives including accuracy,

energy, and latency.

Key Elements. We explain the key elements of our edge AI framework below.
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Figure 1.2: An adaptive framework intuition based on input complexity [64]

1. Design space of coarse-to-fine DNNs. Given a DNN architecture M

(e.g., convolutional neural network) that is appropriate for solving a prediction task

(e.g., image classification), we design space of coarse-to-fine DNNs with L levels of

increasing complexity. Suppose M1,M2, · · · ,ML correspond to the DNNs at the

L levels respectively. Note that ML corresponds to the most complex DNN and

is exactly the same as M. We have one confidence threshold for each of the L-1

levels, which determines the selection of the DNN for each input example. Suppose

T1, T2, · · · , TL−1 correspond to the threshold parameters for adaptive inference.

2. Adaptive inference. Given a coarse-to-fine space of DNNsM1,M2, · · · ,ML

and confidence thresholds T1, T2, · · · , TL−1, we perform adaptive inference for an input
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example x as follows. We sequentially go through DNNs starting fromM1 to make

predictions. If the estimated confidence threshold at level i meets the threshold

parameter Ti or we reach the final level L, we terminate and return the predicted

output ŷ.

3. Hardware resource management policy. The resource management policy

π’s goal is to optimally execute the selected DNN model Mi for an input example x

on the target hardware platform (e.g., ARM’s Big/Little architecture) to save energy.

The policy will select the appropriate hardware configuration by making resource

management decisions such as the number of Big/Little cores to be ON, the frequency

of Big/Little cores, and what task to run on which type of core. We can leverage

recent machine learning methods for runtime resource management [87, 88, 26] to

accomplish this goal.

4. Bayesian optimization for configuring thresholds. Our overall goal is

to optimize the adaptive framework in a data-driven manner to trade-off relevant

objectives including prediction accuracy, energy, and latency. Specifically, each con-

figuration of the threshold parameters T1, T2, · · · , TL−1 gives us a particular trade-off

between accuracy, energy, and latency. We want to find the threshold vectors corre-

sponding to the optimal Pareto front. We can leverage multi-objective BO algorithms

[11, 12, 7, 5, 8, 6, 9]. to solve this problem. BO algorithms can be seen as sequential

decision-making processes that select the next threshold vector to be evaluated to
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quickly direct the search towards optimal Pareto sets by trading-off exploration and

exploitation at each iteration. By selecting a sequence of candidate threshold vectors

for evaluation and learning a statistical model based on the observed training data

(input is threshold vector; and output is an objective vector including accuracy, la-

tency, and energy), the BO approach can quickly move towards high-quality solutions.

The overall BO methodology significantly reduces the number of expensive objective

function evaluations for optimization.

1.2 Outline of Thesis

The remaining part of the dissertation is organized as follows. In Chapter 2, we

discuss the related work on current solutions for edge AI applications considered in

this research and motivate our proposed adaptive inference framework.

The next set of chapters describe the generalization of our framework by demon-

strating it on multiple applications utilizing different DNN architectures of varying

complexity. First we study the problem of computational efficiency of convolutional

neural networks (CNNs) used for image classification task on edge devices. In Chap-

ter 3, we design coarse-to-fine (C2F) network architecture which employs classifiers

of varying complexity depending on the hardness of input examples. The key idea is

to learn to select simpler (coarser) networks to classify “easy” examples and complex

(finer) networks to classify “hard” examples. Figure 1.1 illustrates easy and hard

inputs for image classification task.
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Next, in Chapter 4, we propose LEANets, a second instantiation for image clas-

sification which takes advantage of the other dimension of the network complexity.

While C2F Nets constructs progressively complex networks by adding more layers

thereby increasing the network depth, LEANets achieve the same by adding more

channels expanding along the network width. Both these architectures are stage-wise

optimized to automatically configure for a specified trade-off between accuracy and

energy consumption of inference on a target hardware platform. Further both the

approaches are complementary to most of the existing methods in the sense that it

can reuse a pre-trained DNN towards this goal. We perform comprehensive experi-

ments and our optimized network provides a significant reduction in the Energy Delay

Product (EDP) with no loss in accuracy when compared to the baseline solutions,

where all predictions are made using the most complex network.

In Chapter 5, we demonstrate the framework for the task of 3D shape synthesis,

especially as a surface mesh object, from single color images using Graph Convolu-

tional Networks (GCN) [21, 53, 113]. Unlike image classification tasks that involve

predicting a class label for each image, 3D shape generation is significantly complex

and involves the prediction of an entire mesh to approximate the shape. The accu-

racy of prediction to the actual 3D shape is a function of the number of triangles

in the mesh measured in terms of polycount. Simple objects would require fewer

polygons while complex objects would require more polygons to represent the 3D
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object shape. We propose a novel approach referred to as PETNet that leverages

pre-trained GCNs for predicting 3D object shapes to automatically trade-off energy

and Intersection-over-Union (IoU) score of inference at runtime on a target mobile

platform. Comprehensive experiments on different object classes from the ShapeNet

dataset to show the generality and effectiveness of our approach. Results show that

PETNet achieves 20%-37% gain in energy for negligible loss (0.01-0.02) in IoU score.

In Chapter 6, we propose SETGAN for the task of photo-realistic image synthesis

task using Generative Adversarial Networks (GAN). SETGAN leverages single-image

GANs (smaller model size and faster training/inference time compared to multi-image

GANs) for photo-realistic unconditional image generation to automatically trade-off

energy consumption and accuracy of inference at runtime for a target mobile platform.

SETGAN considers a multi-scale GAN model (GAN models of increasing complexity)

that is amenable for embarrassingly parallel training procedures to reduce latency

and results in more stable training for high-resolution images. For any given input

image, this multi-scale GAN model is quickly trained on a server or cloud, and the

trained model is used for repeated inferences (aka amortization of training cost) to

enable image applications, e.g., image editing. Further, given a user-specified accuracy

threshold, SETGAN automatically selects the smallest scale GAN that meets the

user-threshold to save energy and improve inference time. Simple images can be

generated with small-scale GANs to save energy and we only need higher-scale GANs
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for complex images.

Finally, we conclude the dissertation with the lessons learned and discuss impor-

tant future directions in Chapter 7.
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CHAPTER 2. BACKGROUND AND RELATED WORK

In this chapter, we review the related work on energy efficient edge AI problems.

First we talk about generic solutions which could be used for any network config-

urations and edge AI applications. These solutions fall in the areas of hardware

solutions, software solutions and hardware-software hybrid solutions. Next, since our

framework uses a architecture similar to cascaded architectures, we discuss similar

solutions in literature and their drawbacks. Most of these solutions are based on

CNN based image classification which is relatively simple. It takes a image as input

and classifies it into specific classes. Following which we discuss related work specific

to the real-world edge AI applications, which demonstrate the generalization of our

architecture. Specifically, we discuss about GCN based 3D shape synthesis and GAN

based image synthesis. These two applications are structured in the sense that the

input problem instances and output solutions are combinatorial structures. In 3D

shape synthesis, the input is a 2d image grid and output is a 3D mesh shape object.

The next application, GAN image synthesis, the input is a 2d image and output is a

synthesized variation of similar images of different dimensions.

2.1 Deploying DNNs on Mobile Platforms

Main challenges for deploying deep learning applications on embedded systems

include high resource requirements in terms of memory, computation, and energy.
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Figure 2.1: Image Classification

Prior work has addressed these challenges using methods based on hardware, software,

and hardware/software co-design [43]. We discuss various approaches for these three

categories below.

Hardware Approaches. Architecture level methods include design of specialized

hardware targeting DNN computations using the data-flow knowledge [18], placement

of memory closer to computation units [47], and on-chip integration of memory and

computation [19]. Apart from the constraint of having an application-specific hard-

ware system, most of these hardware technologies also have an overhead of analog to

digital conversion [43].

Software Approaches. To address the challenges in general purpose CPUs and

GPUs, following software-level approaches are studied. Reducing the precision of

weights and activations is one such approach [38]. Fixed point representation of
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weights and activations dynamically varying across different layers is also employed

to reduce the energy and area cost of the network [85]. In [79], authors show that

using floating-point for weights and fixed-point for activations leads to reduction of

power consumption by 50% and reduction in model size by 36%. Another software

level approach is pruning and compression of large-scale DNNs [48]. The sparsity in

features and activations after non-linear operations like ReLU is exploited to compress

the models in [18]. To address significant redundancy in weights during training the

network, the authors in [51] employ pruning technique on the weights based on their

magnitudes. While magnitude-based pruning of weights reduces the computation

cost, it does not directly address the energy cost. To make the model more energy

efficient, an “energy-aware” pruning mechanism is proposed in [116], where pruning

of weights is performed layer-by-layer based on the knowledge of energy hungry lay-

ers. This method is shown to be 1.74 times more energy-efficient when compared to

the weight-magnitude based pruning. A finer-level software approach is to improve

the network architecture. The inception module [40] performs a 2D-convolution con-

sidering two 1D convolutions considering the 2-D filters to be completely separable.

The Xception [20] and Mobilenets [56] architectures also employ depth-wise separable

convolutions similar to inception model, but perform an additional point-wise convo-

lution, i.e., a 1x1 convolution at the end to combine the outputs of the depth-wise

convolutions. This method helps in reducing the computation and model size. The
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SqueezeNet [59] introduces a fire-module that squeezes the filter dimension followed

by expansion to reduce the number of filter coefficients, which helps in achieving the

accuracy of AlexNet with 50X fewer parameters.

Hardware and Software Hybrid Approaches. Many of these approaches involve

design of hardware guided by software level optimization techniques. [85] proposes

a compiler specific to FPGA that analyzes CNNs and generates modules to improve

the throughput of the system. In [42], authors propose the design of Energy Inference

Engine (EIE) that deploys pruned DNN models. In [41], the knowledge of compressed

sparse-weights guides the hardware to read weights and perform MAC computations

only for the nonzero activations, thereby reducing the energy cost by 45%. Slimmable

neural networks (SlimNets) [119] is a very recent state-of-the-art approach that em-

ploys the adaptive computation graph technique. The approach behind SlimNets

involve training a single neural network at different widths (number of channels). At

runtime, we can adaptively execute SlimNet with one of the pre-defined widths as

needed based on the resource constraints on mobile platform.

2.2 Cascaded and Conditional Inference Approaches

Cascaded computation is a general principle that has a long history in computer

science and machine learning [46, 96]. The application of this general principle to a

given problem is non-trivial, and the exact details and algorithmic procedures vary

from one application to another including our co-design approach for inference with
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deep neural networks. Cascaded CNN architecture for face detection [83] progressively

prune areas of the image that are not likely to contain a face. The key differences with

our work are as follows: 1) In our architecture, the features computed in the previous

level are reused in the next level to construct more complex features, whereas the

CNNs used in [83] do not reuse any features; and 2) The approach proposed in [83]

do not allow to optimize the cascade for a specified trade-off between speed and accu-

racy of face detection. Prior work on coarse-to-fine deep kernel networks [104] tries to

combine multiple input kernels in a recursive manner to achieve a complex kernel and

associated representation of the data. This paper makes very strict assumptions and

incorporates these assumptions directly into the overall learning approach: 1) It can

only work for binary classification tasks; 2) It assumes that the number of negative

examples are significantly higher than positive examples. The learning approach in

[104] for training coarser networks is tuned to binary classification and assigns very

high-costs to misclassifying positive examples to incorporate this assumption; and 3)

There are no thresholds to configure the architecture to trade-off speed and accuracy

of prediction. Similarly, there is no optimization methodology to optimize the archi-

tecture for a specified trade-off. The high-level architecture of branch CNN (BCNN)

[44] is similar in style to our C2F model, but there are some significant differences: 1)

BCNN uses linear classifier after each layer, whereas we do not; and 2) The approach

in [44] doesn’t allow to configure the BCNN for any specified trade-off between speed
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and accuracy. This method is also very ad hoc as there is no well-defined optimization

formulation and optimization methodology. The paper on conditional deep learning

(CDL) model [95] is the closest related work to ours. However, there are some signif-

icant differences between our work and this paper: 1) CDL model employs a single

threshold value at all the levels, whereas we employ different thresholds for different

levels. When the number of levels are more, different thresholds for different levels

will achieve better pareto-optimal solutions. As discussed later, our experimental

results on CIFAR10 and CIFAR100 clearly show this difference; 2) In their training

approach, they only train using a subset of the input examples that are not filtered

by the previous level. This will likely cause over-fitting and may not work well on

harder tasks. We train all the intermediate classifiers on all the training examples

to improve their generalization. Additionally, the approach in [95], need to train

all the different levels for each confidence threshold, which is very time-consuming.

In our case, we train classifiers at different levels only once and tune the thresholds

for different levels jointly conditioned on the trained features and classifiers; and 3)

We look at the co-design problem of configuring a software application to run on a

specific hardware architecture for a specified trade-off between accuracy and energy.

Our optimization approach based on Bayesian Optimization principles to configure

the C2F net to trade-off accuracy and energy is significantly different and allows us

to achieve better pareto-optimal solutions.
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There are also approaches that employ a sequence of networks to perform con-

ditional inference depending on the input example to save computation and energy.

Iterative CNN (ICNN) approach [92] makes multi-stage predictions for images, where

a two-stage wavelet transform is applied to produce multiple small-scale images and

train separate models to process them progressively to make predictions. Adaptive

NN [111] employs two DNNs — small one on a mobile and large one on a remote

server – and performs joint optimization. However, this approach is significantly sub-

optimal: only allows two levels and does not reuse computation from small DNN.

Work on conditional deep learning (CDL) model [95] also falls in this category.

2.3 Edge applications

Prior work to deploy DNNs on resource-constrained mobile platforms is primarily

studied for simple classification tasks which uses CNN. There is no prior work in

this problem space for deploying GCNs or GANs to predict structured outputs. In

this following section, we discuss alternative solutions which are currently available

in literature and discuss issues which make running complex architectures like GCN

and GAN difficult to run on edge devices. We further enumerate how our proposed

solution address them.

Multi-Image GANs. Initial attempts to apply GANs [49] suffered from being noisy

and incomprehensible. However, growing both the generator and discriminator pro-

gressively starting from low-resolution images and adding new layers that introduce
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Figure 2.2: GAN Image synthesis

higher-resolution details as the training progresses, greatly improved the speed and

stability of training leading to successful applications [75, 97] GANs trained on mul-

tiple images have been successfully applied for photo-realistic image generation appli-

cations including super-resolution (scaling a low-resolution image to a high-resolution

image) [4], image-to-image translation [60], and paint2image [114]. However, GANs

designed for these applications are very task-specific: models trained for a specific

task cannot be used for other tasks without re-training or using different models.

Additionally, these GANs work only for a specific class of image datasets (e.g., faces)

for which the GAN has been trained for and fail in other cases (e.g., natural scenes).

In contrast, our SETGAN model once trained can be applied to various image ma-

nipulation tasks including super-resolution, harmonization and paint2image. Since
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we train the model for every new image, our approach is applicable for diverse image

types.

Single-Image GANs. Since multi-image GANs are trained using a large number

of images from a specific dataset, they try to capture the characteristics of the whole

dataset requiring large models making it difficult to run on edge platforms. This

drawback is addressed by GANs which train on single images [100]. Several recent

works fit a deep model to a single training image, but all these methods were designed

for specific tasks (e.g., super-resolution [4]) and texture expansion [121]). Further-

more, unconditional single-image GANs have been explored only in the context of

texture generation [16, 66]. In contrast, our SETGAN model is purely generative

(i.e., maps noise to image samples) making it suitable for many image manipulation

tasks.

Generation of 3D Objects from Images There are three major methods that

address the problem of generating 3D object shapes from images. First extends 2D

CNNs to 3D CNNs for producing 3D voxels as output [21].However, this method works

on low-resolution 3D shapes due to memory constraints on modern GPUs. Further,

3D voxels representation is not popular in game and movie industry. Second method

is based on point cloud representation [53]. However, this representation does not

have connection information between points, which makes it hard to recover 3D mesh

directly. Third method is based on 3D mesh generation [55, 67] [113]. Pixel2Mesh
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Figure 2.3: GCN 3D shape synthesis

(P2M) [113] is one such method based on GCNs [105] and has superior performance

when compared to other two methods [55, 67]. Our PETNet approach builds on the

P2M network to trade-off energy and accuracy for producing 3D object shapes from

images on mobile platforms.

In conclusion, our adaptive framework automatically finds the optimized sequence

of classifiers. Our proposed approach has several advantages over prior methods: 1) It

is complementary to methods including quantization, model pruning, hand-designed

networks, and knowledge distillation. Specifically, we can consider our approach as a

wrapper approach that takes the output network from these methods to automatically

trade-off energy and accuracy. 2) Our approach employs pre-trained DNN given as

input and only trains a small number of classifiers. The classifier training overhead
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is negligible when compared to corresponding baselines. 3) Next, our framework

can achieve finer energy-accuracy trade-offs even with a fixed number of levels by

changing the confidence threshold vectors employed to perform input-specific adaptive

inference. On the other hand, other solutions with pre-defined levels can only achieve

a coarse-grained trade-off. 4) Finally, our solutions do not employ any extra network

modules to perform dynamic inference.
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CHAPTER 3. C2FNETS:COARSE-TO-FINE NETWORKS

TO TRADE-OFF ACCURACY AND ENERGY FOR

CLASSIFICATION

In this chapter, we discuss the effectiveness of adaptive inference demonstrating

it using an instance of adaptive CNN inference, namely C2F Nets approach [64] that

allows us to adaptively select a classifier of appropriate complexity depending on the

hardness of the input example.

Convolution neural network (CNN) is the backbone for an image classification

application (e.g., classifying images as cat vs. dog). The application takes an image

x as input and classifies it as one of the candidate classification labels. A CNN is

usually made up of two major blocks. 1) Feature transformation function in the form

of a network of layers that takes the features computed in previous level xi−1 as input

and produces more complex features xi. A feature transformer blocks [MxN ] has a

series of convolution layers followed by a max-pooling layer. M and N represent the

number of convolution layers and the number of filters in each layer. 2) Classifier

takes the features computed by feature transformation function xi and produces a

probability distribution over all candidate labels. The classifier block has a series of

dense or fully connected layers followed by a soft-max layer.
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Figure 3.1: Illustration of Coarse-to-Fine (C2F) networks model.An abstract C2F net

model with T levels from coarsest to finest network, where each level consists

of a feature transformer, a classifier, and a confidence threshold to decide

when to terminate.

3.1 Coarse-to-Fine Networks (C2F Nets)

In this section, we describe the details of our coarse-to-fine networks (C2F Nets)

model. In what follows, we provide the motivation, formal model of C2F Nets with

some examples, and how to make predictions given a fully specified C2F Net model.

3.1.1 Motivation

Simple (shallow) DNNs are energy-efficient, but their accuracy is low. On the other

hand, many state-of-the-art DNNs that achieve very high accuracy are highly complex

(deep) and consume significant amount of energy. We are motivated by the fact that

many input examples are easy and can be classified correctly using simple DNNs and
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only a small fraction of hard inputs would need complex DNNs. We illustrate this

observation using two examples. First, Figure 1.1 shows bird images corresponding to

easy and hard cases. Second, Figure 4.5 shows the accuracy of different DNNs with

varying complexity. We can see that the accuracy improvement is small when we move

from simple to complex DNNs, whereas their energy consumption grows significantly.

This corroborates our hypothesis. Therefore, our goal is automatically select simple

networks for easy inputs and complex networks for hard inputs. This mechanism will

allow us to achieve high accuracy with significantly less energy consumption when

compared to the baseline approach, where we make predictions for all input examples

using the most complex DNN.

3.1.2 C2F Nets Model

A C2F Net model NN with T levels can be seen as a sequence of networks stacked

in the order of increasing complexity as shown in Figure 3.1. Each level i of the model

contains three key elements.

1) Feature transformation function in the form of a network of layers that takes

the features computed in previous level xi−1 as input and produces more complex

features xi. Parameters of the feature function are denoted by αi. Figure 3.1 and

Figure 3.6 provide illustrative examples for feature transformation functions.

2) Classifier takes the features computed by feature transformation function xi

and produces a probability distribution over all candidate labels. Parameters of the
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classifier are denoted by βi. Figure 3.1 provides an illustration of the classifier block.

3) Confidence threshold. Given a predicted probability distribution over classifi-

cation labels, we can estimate the confidence of the classifier in a variety of ways [112]

including: a) Maximum probability, where we take the probability of the highest score

label; b) Entropy over the probability of all candidate labels; c) Margin denoted by

the difference in probability scores between best and second-best label. For a given

confidence type, the confidence threshold γi is employed to determine if the classifier

is confident enough in its prediction to terminate and return the predicted label.

3.1.3 Inference in C2F Nets

Given a C2F Net with all its parameters (α, β, and γ) fully specified, inference

computation for a new input example x is performed as follows (see Algorithm 1).

We sequentially go through the C2F Net starting from level 1. At each level i,

we make predictions using the feature transformation functions parameterized by αi

and intermediate classifiers βi to compute the probability distribution of classification

labels P̂i(y). We estimate the confidence parameter ti from P̂i(y) and predicted output

ŷ as the label with highest probability score. If estimated confidence in prediction

ti meets the threshold γi or we reach the final level T , we terminate and return the

predicted output ŷ for the given input x.
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3.2 Optimization Approach for C2F Nets

In this section, we describe a principled optimization algorithm to automatically

configure C2F Nets for a specified trade-off between accuracy and energy on a target

hardware platform.

Problem Setup. Without loss of generality, let us assume that we are given a C2F

NetNN with T levels. The parameters ofNN can be divided into three parts: 1) Pa-

rameters of feature transformation functions at different levels α = (α1, α2, · · · , αT );

2) Parameters of intermediate classifiers at different levels β = (β1, β2, · · · , βT ); and

3) Confidence thresholds at different levels γ = (γ1, γ2, · · · , γT−1) that decide the

complexity of classifier employed for a given input example. We are provided with

a training set Dtrain and validation set Dval of classification examples drawn from

an unknown target distribution D, where each classification example is of the form

(x, y∗), where x is the input (e.g., image) and y is the output class (e.g., image label).

We are also given a target hardware platformH for which the C2F modelNN need to

be optimized for. We can measure the energy consumption and accuracy of inference

a candidate NN model using the hardware H. Suppose O(NN ,H, λ)= E(x,y∗)∼D λ·

Error(NN , H) + (1- λ)·Energy(NN , H) stands for the expected error and en-

ergy trade-off achieved over the target distribution of classification examples D when

the coarse-to-fine network model NN is executed with parameters α, β, γ on the

target hardware platform H. For a specified trade-off parameter λ ∈ [0, 1], our goal



29

is to find the best parameters α, β, γ of coarse-to-fine network NN to achieve the

specified trade-off between error and energy for the target platform H.

(α∗, β∗, γ∗) = argmin
α,β,γ
O(NN ,H, λ) (3.1)

Since we do not have access to the distribution D, we employ the training and

validation set to find the best parameter values. For example, to evaluate a candidate

parameter configuration over the validation set, we do the following. We compute

the normalized error and normalized energy with respect to the setting where all

predictions are made using the largest network over all the input examples in the

validation set. We plug the normalized error and energy in the objective O to evaluate

the candidate parameter configuration.

3.2.1 Stagewise Optimization Algorithm

The optimization problem posed in Equation 3.1 is extremely challenging to solve

due to complex interactions between the parameter values (α, β, γ) on the optimiza-

tion objective O(NN ,H, λ). Generally, C2F Model NN would be trained using

back-propagation via stochastic gradient descent (SGD) optimization [45]. Specifi-

cally, the Objective requires the energy consumption of coarse-to-fine model NN on

the target hardware platform H, where it is executed. Applying the standard back-

propagation training algorithm would require us to estimate the energy for every

iteration of the training step, which would make the training procedure impractical.
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Algorithm 1 Inference in Coarse-to-Fine Networks

Input: x = input example; NN = C2F network with T levels; α1, α2, · · · , αT =

parameters of feature transformers; β1, β2, · · · , βT = parameters of intermediate clas-

sifiers; γ1, γ2, · · · , γT−1 = confidence threshold values

1: x0 ← x; and level i← 1

2: TERMINATE ← False

3: while TERMINATE == False do

4: xi ← Transform-Features(xi−1, αi)

5: P̂i(y)← Intermediate-Classifier(xi, βi)

6: Prediction ŷ ← label with highest probability from P̂i(y)

7: Compute confidence ti using P̂i(y)

8: if i == T OR ti ≥ γi then

9: TERMINATE ← True

10: else

11: i← i+ 1 // Continue with next level

12: return predicted class label ŷ
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To overcome these challenges, we leverage the structure in this optimization prob-

lem to develop an efficient stagewise optimization algorithm (see Algorithm 2), where

the parameters α, β, and γ are optimized sequentially one after another. By splitting

it into multiple stages, we decouple the dependency of the training procedure for α

and β parameters from the energy measurement step. First, we learn the parameters

α to optimize the feature transformers at different levels. Second, conditioned on the

found α, we learn the parameters β to optimize the intermediate classifiers at different

levels. In both the stages, we optimize only for the prediction accuracy independent

of the energy. Third, conditioned on the found α and β, we find the best values of

confidence thresholds γ to optimize the objective O. We describe the details of these

three optimization procedures in the following subsections.

Algorithm 2 Stagewise Optimization of C2F Nets

Input: Dtrain = training set of classification examples; Dval = validation set of

classification examples; NN = C2F Network architecture with T levels; H = target

hardware platform; λ = parameter to trade-off accuracy and energy;

1: α = (α1, α2, · · · , αT )← Train-Features(Dtrain)

2: β = (β1, β2, · · · , βT )← Train-Classifiers(Dtrain, α)

3: γ = (γ1, γ2, · · · , γT−1)← Optimize-Thresholds(Dval, H, λ, α, β, G), where G

is the joint space of T -1 confidence thresholds

4: return the optimized parameters of C2F Net α, β, and γ
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Algorithm 3 Training Feature Transformers

Input: Dtrain = training set of classification examples

1: α1, α2, · · · , αT ← Train the finest (most complex) classifier in C2F Net to mini-

mize the cross-entropy loss via back propagation algorithm

2: return parameters of feature transformers α1, α2, · · · , αT

3.2.2 Optimizing Feature Transformers

To obtain the parameters α corresponding to feature transformation functions at

different levels, we train the finest (most complex) C2F Net as follows. We mini-

mize the cross-entropy loss over training data Dtrain using a SGD training procedure.

Cross-entropy loss (aka log loss) measures the performance of a classification model

whose output is a probability value between 0 and 1. Cross-entropy loss increases as

the predicted probability diverges from the actual label. SGD is a stochastic approxi-

mation of the gradient descent optimization and is a iterative method for minimizing

cross-entropy loss via back-propagation.

3.2.3 Optimizing Intermediate Classifiers

Our approach to optimize the parameters of intermediate classifiers (i.e., β) is

inspired by the transfer learning approach employed in deep learning. The key idea

is to leverage the pre-trained model for a source task to quickly learn a model for

a relevant target task. In our case, the source task corresponds to learning param-
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eters α for the finest classifier as described above and the target task corresponds

to learning parameters βi for intermediate classifier at level i ∈ {1, 2, · · · , T}. Intu-

itively, we want to minimize the energy consumption as much as possible by making

correct classification decisions with high confidence using simple (coarser) classifiers.

Therefore, we fix the parameters α1, α2, · · · , αi for feature transformation functions

and learn the parameters βi by minimizing the cross-entropy loss over the training

data Dtrain.

Algorithm 4 Training Intermediate Classifiers

Input: Dtrain = training set of classification examples; α1, α2, · · · , αT = parameters

of feature transformers

1: for each level i = 1, 2, · · · , T of C2F Net do

2: βi ← Train a classifier with feature transformers α1, α2, · · · , αi to minimize

the cross-entropy loss

3: return parameters of intermediate classifiers β1, β2, · · · , βT

3.2.4 Optimizing Confidence Thresholds

In this section, we describe our approach for finding the best thresholds γ=

(γ1, γ2, · · · , γT−1) for the specified trade-off between accuracy and energy consump-

tion of inference with C2F networks.

Problem Formulation. Suppose the domain of each confidence threshold γi at each

level i ∈ {1, 2, · · · , T − 1} is [lb, ub]. For example, if we employ probability of highest
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Figure 3.2: High-level overview of Bayesian Optimization approach for selecting the best

confidence threshold values to configure a given C2F Net on a target hardware

platform.

scoring label as our confidence parameter, then lb=0 and ub=1. Let G denote the

joint space of candidate confidence threshold assignments, where g ∈ G is a candidate

assignment to all the T -1 threshold parameters γ1, γ2, · · · , γT−1. We can evaluate the

objective O(NN ,H, λ)= E(x,y∗)∼D λ· Error(NN , H) + (1- λ)·Energy(NN , H)

for any g ∈ G by running the corresponding C2F net model NN on the validation set

of classification examplesDval (i.e., expectation is approximated with a finite sample).

Our goal is to find the best confidence thresholds g∗ ∈ G that will lead to the highest

objective value O(g).

Bayesian Optimization Approach. We propose to solve the above problem using

the Bayesian Optimization (BO) framework [39] that is known to be very efficient

in solving global optimization problems using black-box evaluations of the objec-
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tive function (Figure 3.2). BO algorithms can be seen as sequential decision-making

processes that select the next candidate input to be evaluated to quickly direct the

search towards optimal inputs by trading-off exploration and exploitation at each

search step. By iteratively selecting a candidate input for evaluation and learning

a statistical model based on the observed input and output pairs, BO approach can

quickly move towards high-quality inputs; this significantly reduces the number of

objective function evaluations during the optimization process.

In what follows, we describe the three key elements of the general BO framework

as applicable for our problem:

1) A Statistical Model of the true function O(g) by placing a prior over the

space of functions. Gaussian Process (GP) [98] is the most commonly used prior

due to its generality and uncertainty quantification ability. A GP over a space G is

a random process from G to R. It is characterized by a mean function µ : G → R

and a covariance or kernel function κ : G × G → R. Radial kernels are typically

employed as prior covariance functions of GPs. Using a radial kernel means that

the prior covariance can be written as κ(g, g′) = κ0ϕ(∥g − g′∥) and depends only on

the distance between g and g′. The scale parameter κ0 captures the magnitude the

function could deviate from µ. ϕ is a decreasing function with ϕ(0) = 1. If a function

F is sampled from GP(µ, κ), then O(g) is distributed normally N (µ(g), κ(g, g)) for

all g ∈ G.
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2) An Acquisition Function Af to score the utility of evaluating a candidate

input based on the current statistical model. Af need to trade-off exploration and

exploitation based on the predictions of the statistical model. Exploitation corre-

sponds to selecting candidate inputs for which the statistical model is highly confi-

dent (high mean) and exploration corresponds to selecting candidate inputs for which

the statistical model is not confident (high variance). We employ the popular Up-

per Confidence Bound (UCB) rule as acquisition function. UCB function is defined

as UCBt+1(x) = µt(x) +
√
κt+1σt(x), where µt and σt are the posterior mean and

standard deviation of the GP conditioned on Dt (Algorithm 5). µt encourages ex-

ploitation, σt encourages exploration, and κt+1 controls the trade-off.

3) An Optimization Procedure to select the the best scoring candidate input

according to Af. We employ the popular DIvided RECTangles (DIRECT) approach

to select the input g ∈ G to be queried in each iteration guided by the statistical

model.

In each iteration, BO algorithm calls the optimizer to select the next input g ∈ G

to evaluate the objective O(g), and update the statistical model using the aggregate

training data from past evaluations (see Algorithm 5).

3.3 C2F Nets Design Methodology

In this section, we describe our methodology to design C2F networks from a

given base network architecture (i.e., complex DNN). Although the methodology is
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Algorithm 5 Finding Best Thresholds via Bayesian Optimization

Input: Dval = validation set of classification examples; H = target hardware plat-

form; λ = parameter to trade-off accuracy and energy; α1, α2, · · · , αT = parameters

of feature transformers; β1, β2, · · · , βT = parameters of intermediate classifiers; G =

joint space of confidence thresholds

1: D0 ← small number of input-output pairs; and t← 0

2: repeat

3: Learn the GP model: Mt ← Learn-GP(Dt)

4: Compute the next input to query:

5: gt+1 ← argmaxg∈G Af(Mt, g)

6: Query objective function O at gt+1 to get O(gt+1)

7: Aggregate the data: Dt+1 ← Dt ∪ {(gt+1,O(gt+1))}

8: t← t+ 1

9: until convergence or maximum iterations

10: gbest ← argmaxgt O(gt)

11: return best found thresholds gbest=γ1, γ2, · · · , γT−1
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generally applicable to different neural network architectures, we use convolutional

neural networks for image classification as a running example for illustrative purposes.

3.3.1 Hardware Setup

All our experiments were performed by deploying DNN models on an ODROID-XU4

board [93]. ODROID-XU4 is an Octa-core heterogeneous multi-processing system with

ARM BigLittle architecture, which is very popular in current mobile devices. The

BigLittle architecture consists of asymmetrical multi-core system, where cores are

clustered into two groups based on the power and performance modes: 1) the power

hungry (Big) mode; and 2) the battery saving slower processor mode (Little). The

ODROID-XU4 board employs ARM Cortex-A15 Quad 2GHz CPU as the Big Cluster

and Cortex-A7 Quad 1.4GHz CPU as the Little Cluster. The board boots up Ubuntu

16.04LTS with ODROID’s Linux kernel version 3.10.y. We execute DNN models with

Caffe-HRT [17] that employs Caffe framework [68] with ARM Compute Library to

speed up deep learning computations. We employ SmartPower2 [108] to measure

power. We compute the average power over the total execution time.

3.3.2 Fine-Grained Energy Analysis of Base DNN

Base deep neural network (DNN) architectures. We consider deep convolu-

tional networks for solving image classification task. These architectures consist of

different layers including Convolution, Fully Connected (FC) or Dense, Max Pooling,
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Figure 3.3: Energy distribution of different layers for base network A.

ReLU, Soft-Max, and Batch-Norm. For ease of understanding, we divide the network

into feature transformation block and classifier block. The feature transformer block

is the top part of the network and consists of convolution and max-pooling layers. It

generates the input features for classifier block. The classifier block is the bottom part

of the network and consists of fully connected layers followed by a soft-max layers. It

predicts the final classification label for the input image. Refer Figure 3.1 for further

details. We considered four different base DNNs with differing complexity to solve

image classification task for our fine-grained energy analysis: Base Network A and C

contains six convolution layers and Base Network B and D consists of ten convolution

layers (a slight variant of VGG network [107]). However, we present our analysis and

results for network A noting that the results are similar for all the other networks.

To understand the influence of a DNN architecture on the energy consumption of
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Figure 3.4: Energy consumption at different convolution layers for base network A. Layer

1 is the closest to the input layer. All energy values are normalized with

respect to total energy consumed for inference of one image.

a real-world application, we analyzed the energy consumption per layer for all base

networks to classify a single image. Our high-level energy analysis shows that convo-

lution layers consume the most energy followed by fully connected layers. Figure 3.3

shows the distribution of energy consumed by convolution layers, fully connected

layers, and all other layers for network A. In what follows, we perform fine-grained

analysis for convolution and fully connected layers separately.

Energy analysis of convolution layers. The energy consumed by a convolution

layer depends on the following elements: a) the size of the filter, b) image dimensions

over which the filter is applied, and c) the number of filters. For all the base networks

(A, B, C, and D), the number of convolution filters increases with the depth of the

layer. For example, in base network A, the number of filters for increasing depths are
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Figure 3.5: Energy consumption of FC layer for level 1, level 2, level 3 of C2F Net A.

The effect of adding an extra max-pooling layer to reduce the energy. Energy

values normalized w.r.t FC layer energy of the last level 3.

64, 128, and 192 respectively.

To design C2F Nets, we want to construct relatively simpler networks from base

network for different trade-offs in accuracy and energy consumption. For these sim-

pler (coarser) networks, we want to reduce the energy consumption by varying the

values of the above-mentioned three key elements. We fix the size of the filter to

3x3 across all the layers for all the base networks. Therefore, our design of coarser

networks is guided by reducing the number of convolution layers, number of filters per

layer, and input image dimension. Figure 3.4 shows the distribution of energy con-

sumption (normalized with respect to the total energy consumed by the base network)

across different convolution layers of the base network A. Therefore, by progressively

combining different number of convolution layers, we can generate different coarser
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networks of progressively increasing energy consumption.

Energy analysis of fully connected layers. Fully connected or dense layers

consume the most energy after convolution layers. Dense layer is part of the classifier

block of our base DNNs. The classifier block generally has two or more dense layers.

Out of them, the first dense layer is usually the largest because it is obtained by

flattening the features generated by the immediate convolution layer (just one Max

Pooling layer) and is proportional to square of the image width. Hence, the first FC

layer consumes significantly more energy than the rest.

3.3.3 Designing C2F Networks

Our goal is to construct networks of varying complexity that show different trade-

offs in accuracy and energy to be part of C2F Net.

Convolution layer. From the above discussion, we can construct networks that

consume different amounts of energy by combining different number of convolution

layers (acts as a feature transformer block for each level i) followed by a classifier

for that level. For example, we construct a C2F Net for base network A with three

levels as following. Level 1 (coarsest network) consists of two convolution layers as the

feature block followed by a classifier block. Level 2 consists of four convolution layers

(two extra convolution layers in addition to those from level 1). Level 3 corresponds

to the full base network (finest network). Therefore, with increasing levels, we have

progressively more convolution layers resulting in better accuracy at the expense of
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energy.

Fully connected layer. While designing C2F networks, we add classifiers at dif-

ferent depths of convolution layer for each level. At small depth, the image width

is large (due to fewer max-pooling layers) for convolution. Hence, large number of

features are fed to the classifier block. This increases the energy consumption of fully

connected layers in the classifier blocks for coarser levels. Figure 3.5 shows the energy

consumptions across the different levels of C2F Net corresponding to base network A

as described above without an extra max-pooling layer.

We observe that the energy consumed by FC layer of level 1 and level 2 is signif-

icantly larger than the energy consumed by the FC layer of Finest Layer (level 3),

which is not desirable. Therefore, to match the classifier block energy across different

levels, we add an extra max-pooling layer for each of the classifier block for coarser

networks (level 1 and level 2) such that the FC input dimension and the corresponding

energy is similar across all the levels. Figure3.5 shows that the energy consumption

with the extra max-pooling layer is comparable across all levels.

In summary, a practitioner can employ the above design principles to design

coarse-to-fine networks that provide different trade-offs between accuracy and energy

consumption.
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(a) C2F Net A/Net C

(b) C2F Net B (c) C2F Net D

Figure 3.6: C2F Nets definition in terms of the notation in figure 3.1.

3.4 Experiments and Results

In this section, we first describe the experimental setup and then discuss results

along different dimensions of optimized C2F Nets.

3.4.1 Experimental Setup

Hardware Setup. We employ the hardware platform described in Section 5 to

perform inference using different networks to measure the accuracy and energy con-

sumption of inference process.

Image classification task and Training data. We consider a image classification

task with 10 different classes. We employ the CIFAR10, CIFAR100 and MNIST [24]

[25] image dataset with a 4:1:1 split for training (40000), validation (10000), and

testing (10000) to train and test our C2F Nets approach. The input image dimension

is 32x32x3 for the CIFAR10 and CIFAR100 datasets while it is 32x32x1 for the MNIST
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data set. The number of classes to be predicted is 10 for CIFAR10 and MNIST while

it is 100 for CIFAR100. We employed the CIFAR10 dataset to train our adaptive

C2F nets A and B; MNIST dataset for C2F net C; and CIFAR100 dataset for C2F

net D

Energy and accuracy trade-off objective O. Recall that the training of C2F

Nets is based on the objective O(NN ,H, λ)= E(x,y∗)∼D λ· Error(NN , H) + (1-

λ)·Energy(NN , H) where H is the hardware platform and NN is the C2F Net.

Since accuracy and error are complementary, we have presented all our results in

terms of accuracy and energy for the ease of exposition. Accuracy is measured as the

fraction of input images whose labels are predicted correctly. Energy consumption

of C2F Nets is measured in terms of normalized energy delay product (EDP). EDP

=
∑

P ∆t · T, where ∆t is the time interval at which we record the power P and

T is the total execution time. As power is measured at a regular interval we simply

calculate EDP as EDP = Pavg · T 2 . This value is normalized with EDP of the base

network. We vary the value of λ from 0 to 1 to get C2F Nets optimized for different

trade-offs between accuracy and energy.

C2F Networks. We employ four C2F networks in our experimental evaluation.

Figure 3.6 shows the high-level architecture of C2F Net A and C with three levels

and C2F Net B and D with four levels using the notations introduced in Figure 3.6.

With Net A and Net B we demonstrate the effect of different architectures on the same



46

CIFAR10 dataset. With Net C and Net D we analyze the impact on the performance

for a simpler and complex dataset like MNIST and CIFAR100 respectively.

Confidence threshold types. We experimented with all three types of confidence

computation including Max probability, Margin, and Entropy. We observed that per-

formance is almost same for all the three types. Therefore, we present all our results

using Max probability as the confidence type.

Offline training of C2F Nets. Recall that we need to find the parameters α, β, and

γ for the specified trade-off objective using training and validation set of classification

examples. For obtaining the parameters α and β, we employ the backpropagation

training algorithm using RMS prop optimizer with learning rate of 0.0001 and a

decay set to 1e−6. We employ a batch size of 128 and run training for 200 epochs

with sufficient data augmentation including horizontal flips, width and height shifts.

For obtaining the confidence thresholds, we employ the Bayesian Optimization (BO)

approach with Gaussian kernel and UCB rule as the acquisition function. We use

five evaluations of the objective O randomly for initialization. We run BO until

convergence or a maximum of 100 iterations. We train C2F Nets for different values

of λ to get different trade-offs between energy and accuracy.

3.4.2 Results and Discussion

In this section, we present the results of our optimized C2F Nets and compare

them along different dimensions.
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(c) C2F Net C
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(d) C2F Net D

Figure 3.7: Accuracy and EDP when all predictions are made using an independently

trained network at a particular level.

Accuracy and energy of networks at different levels. We train and test the

networks at different levels that are part of C2F Net. Specifically, we make all the

predictions using a single network for each level of C2F Net. This experiment will

characterize the accuracy and energy trade-off achieved by different networks (coarsest

to finest) that are part of C2F Net. Figure 4.5 shows the accuracy and energy metrics

for networks at different levels for all the C2F Nets A, B, C and D. C2F Net A:

From level 3 to level 2, we can see that accuracy drops by 5% and EDP reduces by
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Figure 3.8: Energy consumption of adaptive C2F Nets optimized to achieve the accuracy

of networks at different levels. Energy values are normalized w.r.t the most

complex network.

50%. Similarly, from level 2 to level 1, accuracy drops by 15% and EDP reduces

by 30% w.r.t level 3. C2F Net B: We achieve an accuracy of 92% when we train

and test the base network architecture B (i.e., level 3 network) on CIFAR10 data.

We see a 7% drop in accuracy and 85% gain in EDP when we move from level 3

to level 2. C2F Net C and D: We see the trend to be similar to Net A and B
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(a) Images predicted at level 1 (coarsest

network)

(b) Images predicted at Level 3 (finest

network)

Figure 3.9: Predicted images at different levels for C2F Net A

respectively. However, we observe higher accuracies with Net C because MNIST data

set is simple and obtain lower accuracies in NET D because CIFAR100 data set is

relatively complex.

In summary, we see a significant gain in energy with relatively small loss in accu-

racy when we move from finest to coarsest network in C2F Nets. This corroborates

our hypothesis that we can save significant amount of energy if we are able to select

coarser networks for large fraction of easy images and complex networks for hard

images that are relatively small.

Optimized C2F Net for accuracy of different networks. We saw that fixed

networks take significantly more energy for small improvement in accuracy. On the

other hand, optimized C2F Nets can potentially reduce the energy consumption to
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(b) Pareto-optimal curves obtained by vary-

ing λ value (trade-off between energy and

accuracy) for different C2F Nets: A (CI-

FAR10), B (CIFAR10), C (MNIST), D (CI-

FAR100).

Figure 3.10: Prediction times and pareto performance of adaptive C2F nets

achieve the same amount of accuracy by performing input-specific adaptive inference.

To test the effectiveness of adaptive C2F Nets, we trained C2F nets with different

λ (trade-off) values to find the configurations that achieve the same accuracies as

networks at different levels (Figure 3.8).

C2F Net A: Adaptive C2F Net improves the EDP by 26% and 20% to achieve

the same accuracies when compared to the base networks at level 2 (89.8% accuracy)

and level 1 (85% accuracy).

C2F Net B: We see significantly more improvement in energy gains when com-
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Figure 3.11: Comparison of pareto-optimal curves: single threshold for all levels vs. dif-

ferent thresholds for different levels.

pared to C2F Net A. For example, EDP improves by 60% to achieve 92% accuracy

of level 3 (most complex network) and improves by 26% for achieving 85% accuracy

of level 2 network.

C2F Net C and D: Similar to the results for Net A and Net B, we observe that

EDP improves by 46% and 51% respectively with respect to the base network.

In summary, our approach using adaptive C2F Nets can significantly reduce the

energy consumption with negligible loss in accuracy when compared to base networks

of different complexity that are part of C2F Net. Additionally, the energy gains

increase significantly for complicated base networks (e.g. Net B and D).

Prediction time of adaptive C2F Net vs. finest network. We compare the

average execution time to make predictions using adaptive C2F Nets and the finest
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Figure 3.12: Results for optimized C2F Net A by varying λ values.

(most complex) network, where C2F Nets are optimized to achieve the same accuracy

as the finest network. Figure 3.10(a) shows these results. For network A, the average

prediction time of base network and adaptive C2F net are ∼0.27 secs and ∼0.20 secs

respectively, i.e., 26% reduction in prediction time. Similarly, for network B, the
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prediction time reduces from ∼0.82 secs to ∼0.40 secs leading to 52% reduction. In

summary, our adaptive C2F networks perform better in terms of prediction time to

achieve the same accuracy as the base network. Additionally, the improvement is

much more for complex networks similar to energy gain results.

Fine-grained analysis of adaptive C2F Nets. We demonstrated that adaptive

C2F nets can improve both energy and prediction time when compared to the finest

network through the above presented results. We perform fine-grained analysis to

understand how adaptive C2F nets achieve these gains. We present this analysis for

C2F Net A noting that analysis for other C2F nets show similar trends.

C2F Net A was optimized for achieving the same accuracy (89.8%) as the finest

network. The energy gains can be explained by understanding how many images

out of the 10000 image testing set are classified at different levels. At level 1, 263

images are classified with 100% accuracy. At level 2, 4911 images are classified with

with 98.7% accuracy. At level 3, 4826 images are classified with 80.2% accuracy.

Therefore, 2%, 48%, and 49% of the total testing images are classified at levels 1,

2, and 3 respectively. From previous results, we see that the accuracy of 89.8% is

obtained using 76% of the energy consumed by the finest network. Levels 1, 2, and 3

contribute 0.46%, 24.5% and 48.26% to this 76% respectively. Similarly, for C2F Net

B with four levels, we see 0, 1339, 5517, and 3144 images classified with accuracies of

0, 99.7%, 97.17% and 79.73% and energy consumption of 0.0, 0.49%, 7.7% and 31.4%
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respectively. In both cases, more than 50% of the images were predicted by a level

other than the last level. Additionally, accuracy of the lower levels is closer to 100%.

Therefore, we see huge improvements in energy and prediction time for adaptive C2F

Nets.

Qualitative results. Figure 4.1 shows some sample images that are predicted at

level 1 (coarsest) and level 3 (finest) using adaptive C2F Net A. We make following

observations: 1) Images classified using level 1 are simpler with a single object and

clear background; 2) Images classified using level 2 have overlapping or hidden objects

with confusing backgrounds. These results demonstrate how adaptive C2F nets use

simpler classifiers for easy images and complex classifiers for hard images.

Single threshold vs. Multiple threshold. To measure the quantitative difference

between using single threshold for all levels of C2F net (as in CDL [95]) and different

thresholds for all levels, we compare their pareto-optimal curves. Figure 3.11 shows

the comparative results for adaptive C2F networks B and D. We make the following

observations. When the number of levels are more, different thresholds for different

levels achieve better pareto-optimal solutions when compared to the setting with

single threshold for all levels. Our experimental results on CIFAR10 (Net B) and

CIFAR100 (Net D) clearly show this difference. We also present the pareto-optimal

solutions we obtained for all adaptive C2F Nets A, B, C and D in Figure 3.10(b) for

completeness.
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Behavior of optimized C2F Nets with different λ. We can vary the trade-off

parameter to obtain optimized C2F nets for different accuracy and energy trade-offs.

When λ is close to zero, there is more emphasis on saving energy without paying

attention to accuracy. Similarly, when λ is close to one, adaptive C2F nets try to

achieve best possible accuracy by minimizing the overall energy consumption.

We study the behavior of optimized C2F nets with different values of λ in terms of

the number of images predicted at different levels, the prediction accuracy at different

levels, and the average prediction time. Figure 4.11 shows these results for C2F Net

A noting that results are similar for other C2F nets.

We make following observations from Figure 4.11(a). When λ=0, all the images

are predicted at level 1 as coarsest network consumes the least energy. As the λ value

increases, the number of images predicted by level 2 and level 3 slowly increases to

achieve higher accuracy. Note that, even with the highest λ value, not all images are

predicted by level 2 (finest network) to optimize the energy consumption to achieve

high accuracy.

From Figure 4.11(b), we can see that as λ increases, the prediction accuracy of level

1 and level 2 increases proportionally and reach almost 100% accuracy. The overall

accuracy of C2F net is primarily determined by the accuracy of level 2 classifier.

From Figure 4.11(c), we observe that the average prediction time gradually in-

creases with λ, which is explained by more and more images getting predicted at



56

higher levels. When compared to the base (finest) network, the prediction time at

λ=0 is 63% lesser and at highest λ value, we get around 26% gain. Therefore, in

scenarios where we require real-time predictions, we can optimize the accuracy of

C2F nets for the target time constraints.
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CHAPTER 4. LEANET: DESIGN AND OPTIMIZATION

OF ENERGY-ACCURACY TRADE-OFF NETWORKS

VIA PRETRAINED DEEP MODELS

In this chapter, we discuss another instance of adaptive CNN inference, namely

LEANet approach [61] that allows us to adaptively select a classifier of appropriate

complexity depending on the hardness of the input example. Complimentary to C2F

Nets, the LEANets build adaptivity by scaling along the width of the CNN i.e. we

increase the number of channels as the complexity of the CNN increases. In the

following sections we first give an overview of the framework, followed by the design

space and optimization methodology and finally present the experimentation setup

and results.

4.1 Overview of LEANet Framework

In this section, we provide a high-level overview of the Learning Energy Accuracy

Tradeoff Networks (LEANet) framework. First, we explain the key insights behind

LEANet. Second, we formally describe LEANet model and the associated inference

procedure.
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(a) Images predicted at level 1 (b) Images predicted at level 5

Figure 4.1: Images predicted at lowest and highest levels for LEANet(MobileNet) w/ CI-

FAR10.

4.1.1 Motivation

Deploying large DNN models on mobile platforms requires lot of resources in terms

of computation and energy. DNN architectures like MobileNet address the challenge

of constrained-resources on mobile platforms by compressing the network with some

loss in accuracy. Even though these architectures address the resource requirements

for inference, they still involve a huge cost for training them from scratch for a new

real-world (edge) application. Towards the goal of overcoming their drawbacks and for

further improving the energy and computational-efficiency of state-of-the-art DNNs

like MobileNet, we propose the LEANet model.

LEANet can be interpreted as a wrapper approach that takes a pre-trained DNN

model as input and reuses the learned weights to automatically build a multi-level
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Figure 4.2: Illustration of LEANet model. Given a pre-trained network as shown in (b),

we can split into multiple levels with reusable computation from lower levels

as shown in (a). The nested boxes for different channel sets represent the reuse

of computation from lower levels at higher levels. (c) Neural architectures of

some popular DNNs including ConvNet, VGG16, and MobileNet.

DNN, where level number is proportional to the complexity of the corresponding

classifier. The key idea is to slice the pre-trained DNN vertically into sets of filter-

maps/channels and progressively go from simpler to complex classifier only if needed

thereby reusing the computation of lower levels at higher levels to achieve upto 50%
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reduction in energy-consumption and execution time with little to no loss in accuracy.

Figure 4.1(a) and (b) shows some sample images from our experiments that are

predicted at level 1 and level 5 respectively using an instantiation of LEANet with five

levels based on MobileNet. Images classified using level 1 are simpler with a single

object and clear background while images classified using level 5 have overlapping,

skewed or hidden objects with confusing backgrounds. These results provide evidence

for the key intuition behind our proposed LEANet approach.

Figure 4.3: Illustration of a two-level LEANet model with one convolution layer. The

blue part from level 1 is reused in level 2.
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4.1.2 LEANet Model and Inference

A LEANet model M with L levels is a sequence of classifiers of growing com-

plexity resulting from increased number of channels with growing levels as shown in

Figure 4.2. There are three key components for each level in a LEANet model.

1) Channel sets: This comprises of a fraction of learned filter-maps/channels for

each layer in the pre-trained DNN. Each successive level employs an increasing number

of channels. The parameters (denoted by CSi) of channel sets are reused from the

given pre-trained DNN in the LEANet model. It takes the features computed in

previous level Li−1 and input image (x) as input, and produces complex features Li.

2) Classifier: A classification layer that takes the features computed by a given

channel set and produces a probability distribution over all labels. In LEANet model,

we only learn the parameters (denoted by Hi) of this classification layer.

3) Confidence threshold. Given a predicted probability distribution over candi-

date labels, we can estimate the confidence of the classifier [112] using the maximum

probability, where we take the probability of the highest scoring label. The confi-

dence threshold Ti is employed to determine if the classifier is confident enough in its

prediction to terminate and return the predicted label.

Inference in LEANet model. Given a LEANet modelM with all its parameters

(CSi, Hi, Ti for all levels 1 ≤ i ≤ L ) fully specified, inference computation for input

example x is performed as follows. We sequentially go through the LEANet model
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starting from level 1. At each level i, the channel set CSi takes the input x and reuses

the features computed from the previous level CSi−1 to produce the features of CSi.

Then classifier layer Hi makes predictions using the features resulting from the given

channel set CSi. If the estimated confidence parameter T̂i meets the threshold Ti or

we reach the final level L, we terminate and return the predicted output ŷ.

4.2 Design Space of LEANet Models

In this section, we describe the design space of candidate LEANet models that

can be constructed using a given pre-trained DNN (e.g., MobileNet). For the sake

of understanding, we first explain the case of LEANet model with two levels and

then generalize the space for more than two levels. We employ CNNs for image

classification as a running example for illustrative purposes.

As shown in figure 4.2(a), we divide the convolution layers of the given pre-trained

neural network (CNN) into multiple levels by using increased number of channel sets

with growing levels. Any general CNN architecture is composed of several convolution

layers as shown in Figure 4.2(b). Let a convolution layer consists of N channels.For a

L level LEANet, our method selects ni channels of each convolution layer for each level

i, where ∀ j > i,
∑j

k=1 nk >
∑i

k=1 ni, and
∑n

k=1 nk = N . Intuitively, each successive

level builds a classifier of increasing complexity resulting from the increased number

of channels ni in each layer.
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Two-Level LEANet. For illustration, we construct a two level LEANet. Consider

a convolution layer with a filter of width (C), height (C), and depth (M) convolving

over an input layer (I) of M Channels to produce an output layer (O) of N channels.

We describe splitting at two levels using M1 input channels and N1 output channels

for level L1, and M1 + M2 = M input channels and N1 + N2 = N output channels

for level L2. In level L1, first N1 output channels (On) are obtained from the first M1

input channels (Im) as given by:

OL1
n [a, b] =

M1∑
m=1

C/2∑
i=−C/2

−C/2∑
j=−C/2

Im[i+ a, j + b] · wmn[i, j] (4.1)

∀n ∈ 1, 2 . . . N1

, where wn represents filter weights. The above equation can be re-written as:

OL1
n [a, b] =

M1∑
m=1

C∗
m[a, b] ∀n ∈ 1, 2 . . . N1

C∗
m[a, b] =

C∑
i=1

C∑
j=1

Im[i+ a, j + b] · wn[i, j] (4.2)

, where C∗
m represents the convolution operation.

In level L2, we consider all N output channels. The equation for the first N1

output channels is as follows:
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OL2
n [a, b] =

M1+M2∑
m=1

C∗
m[a, b] ∀n ∈ 1, 2 . . . N1

OL2
n [a, b] =

M1∑
m=1

C∗
m[a, b] +

M2∑
p=M1+1

C∗
p [a, b] (4.3)

, where the first part in equation (3) can be reused from level L1. This reuse of

computation is illustrated in Figure 4.3. Furthermore, the remaining N2 new output

channels used in L2 can be computed similar to equation (1).

For a numerical illustration, consider a 2 level LEANet setup for a convolution

layer with M = 48 input channels and N = 96 output channels. Let M1 = 32,

N1 = 64, M2 = 16 and N2 = 32. The computation in L2 is proportional to MN of

which we are reusing M1N1 part from L1. Therefore, the reuse ratio is

M1 ·N1

M ·N
=

M1 ·N1

(M1 +M2) · (N1 +N2)
=

32 · 64
48 · 96

= 0.44

The illustrative demonstration of convolutional layer with two levels show how

much we are reusing the computation from previous level to the next level. Equa-

tion 3 corresponds to this demonstration without pooling and non-activation layers.

Specifically, we are not reusing the solutions from pooling and non-activation layer

operations. Instead, the partial output of convolutional layer from previous level

i-1 and the new convolutions at level i are jointly passed through the pooling and

non-activation layers (negligible computational overhead) to compute the input for

the next convolutional layer for level i. We reuse the computation from the previous
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level in the next level to generate more features. Importantly, these features are not

necessarily equivalent to the features generated from scratch at each level in the base

DNN. The classifier used at the end of each level can compensate for the difference

in the features generated (exact vs. approximate) by learning appropriate weights

to be able to make correct predictions. Hence, learning classifiers tuned for approxi-

mate features allow us to trade-off energy and accuracy of inference in our LEANet

approach.

Multi-Level LEANet. We can easily generalize the idea of LEANet with two levels

to multiple levels (L > 2). As illustrated in Figure 4.3, while moving across successive

levels, LEANet models reuse the computation from previous levels. To describe the

general expression for this computational reuse factor consider a multi-level LEANet

model with L > 2 levels. Without loss of generality, consider a convolutional layer

which is split into Mi input channels and Ni output channels corresponding to each

level 1 ≤ i ≤ L. Extending equation (5), the reuse of computation going from level i

to i+ 1 is given by: ∑i
j=1Mj ·

∑i
j=1Nj∑i+1

j=1Mj ·
∑i+1

j=1Nj

(4.4)

Though most networks use normal convolution, as shown in Figure 4.2 (c), net-

works like MobileNet employ different types of layers. We now extend the LEANet

splitting criterion to other layer types. Pointwise 2D Convolution is similar to a

C × C convolution layer with C = 1. Thus the reuse factor remains same since M
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and N does not change. Depth-wise 2D Convolution is another special case where the

input channels (M = 1). Therefore, we have a single parameter N output layers in

LEANet. This makes the reuse factor
∑i

j=1 Nj∑i+1
j=1 Nj

Batch Normalization too has M = 1

like Depth-wise 2D convolution. This layer has four different parameters given by

gamma weights, beta weights, moving mean (non-trainable), and moving variance

(non-trainable). Thus, based on the above details, while constructing multiple lev-

els, we carefully map the appropriate input channels to appropriate output channels

across levels to maximize the computational reuse, thereby minimizing the energy

consumption of the overall LEANet model.

4.3 Design Optimization Methodology

In this section, we describe the details our optimization methodology to find the

best LEANet model in terms of the Pareto front to trade-off energy and accuracy of

inference.

Design Space Definition. As explained in Section 4.2, each candidate LEANet

model in our design space depends on three variables: number of levels (L), fraction

of channels in channel set CSi of each level given by (F1, F2, · · · , FL), and confidence

thresholds (T1, T2, · · · , TL−1) for each classifier Hi. Each Fi is equal to Ni/N where

Ni is the number of channels in level i and N is the total number of channels. This

is a conditional search space in the sense that the size of fraction-of-channels vector

and confidence thresholds vector depend on the number of levels L.
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Optimization problem. Each candidate LEANet model (configuration of the three

variables mentioned in the design space definition) corresponds to a accuracy and

energy pair over a given evaluation set of classification examples. Given a pre-trained

DNN N , training set TSr, and validation set Va of classification examples, our goal

is to find the LEANet model configuration, which converges to the optimal energy

and accuracy trade-off Pareto front for a given target mobile platformMP .

Optimization methodology. As described in Algorithm 6 to obtain the optimal

Pareto front, we iterate over the number of levels L starting from L=2 until con-

vergence. We determine the fraction of channels at each level i=1 to L as follows.

The final level L corresponds to the input pre-trained DNN N that will achieve the

highest accuracy. The fraction of channels at level one (F1) is based on the minimum

energy budget of target mobile platform MP , which we want to use to be able to

perform inference using an appropriately granularity of DNN. The highest level (level

L) will employ all the channels (FL=1.0x): consumes the maximum energy to provide

highest accuracy. The fraction of channels at levels (i > 1) are obtained by allocating

the remaining channels equally for all the remaining L-2 levels. For example, if the

minimum energy budget of mobile platform allows us to run at 0.5x of the base DNN,

it would correspond to the lowest level. For 3 levels, fraction of channels in channel

sets would be [0.5x, 0.75x, 1.0x] and for 4 levels, fraction of channels in channel sets

would be [0.5x, 0.675x, 0.875x, 1.0x].



68

Given the number of levels L and fraction of channels in each level (F1, F2, · · · , FL),

we train the classifiers H1, H2, · · · , HL−1 with the training data TSr using stochastic

gradient descent and back-propagation. HL corresponds to pre-trained DNN. Subse-

quently, we determine a set of confidence threshold vectors TL based on the target

mobile platformMP (to compute energy consumption) and the validation data Va

(to compute accuracy) using a novel multi-objective Bayesian Optimization (BO) ap-

proach referred as UnPAc. Each threshold vector (T1, T2, · · · , TL−1) ∈ TL corresponds

to a particular trade-off between energy and accuracy. We observed diminishing re-

turns as we increase the number of levels and Pareto fronts converge in at most 5

levels. Our overall optimization procedure including identifying the number of levels,

training the classifiers at all levels, and finding the set of confidence threshold vectors

corresponding to the energy and accuracy trade-offs is executed offline. At runtime,

we can select the appropriate confidence threshold vector for the required energy and

accuracy trade-off.
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Algorithm 6 LEANet Design Optimization

Input: N = Pre-trained deep model; TSr= Training set; Va= Validation set; and

MP = Target mobile platform

1: Initialization: number of levels L=2

2: while Convergence do

3: Set channel fractions F1, F2, · · · , FL via domain knowledge

4: Train classifiers H1, H2, · · · , HL−1 using TSr

5: Threshold vectors TL ← UnPAc(N ,MP , Va) // Find the optimal Pareto

front of energy and accuracy

6: L← L+ 1 // Increase the number of levels

7: return optimized LEANet model with L levels, classifiers at all levels, and con-

fidence threshold vectors TL to trade-off energy and accuracy

4.3.1 UnPAc Algorithm to Estimate Thresholds

For a given number of levels L and the trained intermediate classifiers of a candi-

date LEANet model, our goal is to find a set of threshold vectors TL that correspond

to the Pareto front of energy and accuracy trade-off. There are two key challenges in

solving this problem: 1) The energy and accuracy objective functions are unknown

and we need to perform experiments to evaluate each candidate threshold vector

(T1, T2, · · · , TL−1) ∈ T . In our specific problem, evaluation of both the objectives is
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expensive: evaluation of the energy objective on target mobile platformMP is much

more expensive than the accuracy objective; and 2) The objectives are conflicting in

nature and they cannot be optimized simultaneously. Therefore, we need to find the

Pareto optimal set of solutions. A solution is called Pareto optimal if one objective

cannot be improved without compromising other objectives. The overall goal is to

approximate the true Pareto set by minimizing the overall number of energy and

accuracy evaluations.

Multi-Objective Bayesian Optimization Formulation. We formulate the above

problem in the framework of multi-objective Bayesian Optimization (BO): the input

space T of all candidate threshold vectors is [0, 1]L−1; and energy and accuracy over

the validation set Va and target mobile platformMP as the two unknown objective

functions. BO algorithms learn cheap surrogate models (e.g., Gaussian Process) from

training data obtained from past evaluations of objective functions. They judiciously

select the next candidate input (T1, T2, · · · , TL−1) ∈ T for evaluation by trading-

off exploration and exploitation to quickly direct the search towards approximating

the true Pareto front. Acquisition functions are defined in terms of the statistical

models to score the candidate inputs and guide this search process. PESMO [54] is

the state-of-the-art approach to solve multi-objective BO problems based on entropy

optimization. PESMO reduces the problem to single-objective optimization. It itera-

tively selects the input that maximizes the information gained about the true Pareto
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set. Unfortunately, this choice is sub-optimal as it is hard to capture the trade-off

between multiple objectives and can potentially lead to aggressive exploitation be-

havior. Indeed, our experiments demonstrate the inefficiency of PESMO. Motivated

by the need for a more sample-efficient optimization approach, we propose a novel

algorithm referred as Uncertainty Reduction via Portfolio Acquisition optimization

(UnPAc).

Solve cheap MO via NSGA-II

Learning
Statistical Models

𝑇𝑠 Selected threshold vector

Pareto set

𝑀1

𝑇𝑠, 𝐸(𝑇𝑠)

𝑇𝑠 , 𝐴(𝑇𝑠)

𝑀2

Construct Cheap
MO problem

𝑴𝒂𝒙

𝑼𝑪𝑩 𝑴𝟏, 𝑻

𝑬𝑰 𝑴𝟏, 𝑻

𝑼𝑪𝑩 𝑴𝟐, 𝑻

𝑬𝑰 𝑴𝟐, 𝑻

Multiple Blackbox
Functions

𝑬𝒏𝒆𝒓𝒈𝒚(𝑻)

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚(𝑻)

T ∈ T

Uncertainty Maximization

Figure 4.4: Overview of the UnPAc algorithm.

UnPAc Algorithm. As shown in Figure 4.4, UnPAc is a iterative algorithm which

involves four key components as described below. The energy and accuracy objective

functions are considered as the two blackbox functions to be optimized.

1) Learning statistical models. We build statistical models M1 and M2 for

both unknown objective functions accuracy and energy from the training data in the

form of past function evaluations. In each iteration of UnPAc, the learned statisti-
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cal models M1 and M2 are employed to select the next candidate threshold vector

(T1, T2, · · · , TL−1) ∈ T for evaluation.

2) Constructing cheap MO problem. We select a set of promising candidate

inputs Tp ⊂ T by solving a cheap multi-objective (MO) optimization problem defined

using the statistical models M1 and M2. Specifically, we employ two acquisition

functions for each statistical model: upper confidence bound (UCB) and expected

improvement (EI) as defined below.

UCB(x) = µ(x) + β1/2σ(x) (4.5)

LCB(x) = µ(x)− β1/2σ(x) (4.6)

EI(x) = σ(x)(αΦ(α) + ϕ(α)) (4.7)

, where α = τ−µ(x)
σ(x)

; µ(x) and σ(x) correspond to the mean and standard deviation

of the prediction from statistical model, and represent exploitation and exploration

scores respectively; β is a parameter that balances exploration and exploitation ,

which is automatically specified based on the iteration number t based on theoretical

analysis of convergence from Srinivas et al. [110]; τ is the best uncovered input; and

Φ and ϕ are the CDF and PDF of normal distribution respectively.

3) Solving the cheap MO problem. We use the popular NSGA-II algorithm [?

] to solve the cheap MO poblem to obtain the Pareto set Tp representing the most
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promising candidate inputs for evaluation.

Tp ← max
T∈T

(UCB(M1, T ),EI(M1, T ),UCB(M2, T ),EI(M2, T )) (4.8)

The acquisition functions for each unknown function tells us the utility of evaluat-

ing a candidate threshold vector. For example, a threshold vector might have a high

utility for accuracy, but may have a lower utility for optimizing energy consumption.

Therefore, the Pareto set found by solving cheap MO problem captures the trade-off

between the utility for both unknown objective functions.

4) Uncertainty maximization. From the promising candidate setTp obtained by

solving the cheap MO problem, we need to select the best threshold vector such

that it will guide the overall search towards the goal of quickly approximating the

true Pareto set. We employ a uncertainty measure defined in terms of the statistical

models M1,M2 to select the most promising candidate input for evaluation. We

define the uncertainty measure as the volume of the uncertainty hyper-rectangle.

Uβt(T ) =V OL({(LCB(Mi, T ), UCB(Mi, T )}2i=1) (4.9)

, where LCB(Mi, x) and UCB(Mi, T ) represent the lower confidence bound and

upper confidence bound of the statistical modelMi for threshold vector T as defined

in equations 4.6 and 4.7. We measure the uncertainty volume measure for all thresh-

old vectors T ∈ Tp and select the one with maximum uncertainty for evaluation:

Ts = argmaxT∈Tp Uβt(T ).
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Dataset[DNN] Fraction of channels(Width)

CIFAR10[Conv/VGG/MobileNet] 0.55x 0.625x 0.75x 0.875x 1x

MNIST[Conv/VGG/MobileNet] 0.5x 0.625x 0.75x 0.875x 1x

SVHN[Conv/VGG/MobileNet] 0.5x 0.625x 0.75x 0.875x 1x

Table 4.1: The number of levels L and the fraction of channels (width) at different levels

when LEANet optimization approach converges.

Finally, this selected threshold vector Ts is used for evaluation to get the cor-

responding energy E(Ts) and accuracy A(Ts). The next iteration starts after the

statistical modelsM1 andM2 are updated using the new training example: input is

Ts and output is (E(Ts), A(Ts)). Unlike prior methods including PESMO that reduce

to single-objective optimization, UnPAc follows the above procedure to select better

candidates for evaluation in each iteration. Recent work on multi-objective optimiza-

tion [12] showed that output space entropy search is more effective than input space

entropy search. It would be interesting future work to see how UnPAC compares to

this approach.

4.4 Experiments and Results

In this section, we first describe the experimental setup and then discuss results

of LEANet along different dimensions.
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4.4.1 Experimental Setup

Hardware Setup. All our experiments were performed by deploying DNN models

on an ODROID-XU4 board [93]. ODROID-XU4 is an Octa-core heterogeneous multi-

processing system with ARM Big-Little architecture, which is very popular in current

mobile devices. The ODROID-XU4 board employs ARM Cortex-A15 Quad 2GHz CPU

as the Big Cluster and Cortex-A7 Quad 1.4GHz CPU as the Little Cluster. The

board boots up Ubuntu 16.04LTS with ODROID’s Linux kernel version 3.10.y. We

execute DNN models with Caffe-HRT [17] that employs Caffe framework [68] with

ARM Compute Library to speed up deep learning computations. We ran the software

programs for our LEANet approach, full DNN, and SlimNets baseline on the mobile

platforms to measure the energy consumption. Therefore, all the presented results

are relative to the common software execution scheme. Studying optimized execution

schemes for LEANet models to minimize memory overhead is part of our immediate

future work. We employ SmartPower2 [108] to measure power. We compute the

average power over the total execution time.

Energy objective. Energy consumption of LEANet models is measured in terms

of the normalized energy delay product (EDP). EDP =
∑

P ∆t · T, where ∆t is the

time interval at which we record the power P and T is the total execution time. As

power is measured at a regular interval, we simply calculate EDP as EDP = Pavg ·

T 2 . This value is normalized with EDP of the pre-trained DNN. We use EDP and
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energy interchangeably in the discussion of our results. However, all our presented

results are for EDP unless specified otherwise.

Image classification task and training data. We demonstrate the general ap-

plicability of our LEANet based approach using three different pre-trained DNNs as

shown in Figure 4.2 (c): 1) Conv, a VGG style neural network with 6 convolution

layers; 2) VGG, a more complex network with 10 convolution layers; and 3) Mo-

bileNet. We ran extensive experiments using MNIST, CIFAR10, and SVHN image

datasets to study the performance gains with classification tasks of varying difficulty.

We used the standard 4:1:1 split ratio for training, validation, and testing (10000)

set respectively. Accuracy is measured as the fraction of input images whose labels

are predicted correctly. We present all our results in terms of accuracy and normal-

ized EDP for the ease of exposition. To demonstrate the effectiveness of LEANets

on large datasets, we ran experiments using the ImageNet dataset [101]. ImageNet

has a training set of roughly 1.2 million images and around 50000 validation and test

images. Each image has 224×224×3 dimensionality and maps to one of the 1000 can-

didate class labels. We present the results for ImageNet in terms of top-5 accuracy

(commonly employed metric in the literature) and normalized EDP.

Classifier Training. We employ a multi-layer Perceptron to learn classifiers at

intermediate levels (Hi) as shown in Figure 4.2(b). In this multi-layer Perceptron,

input corresponds to the output of the final convolution layer and number of output
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class labels is same as that of the classification task. The hidden layer is given a

fixed value as a function of the size of the input feature vector. In practice, half the

size of input feature vector gives consistent results in all our experiments. To train

the parameters of classifier (Hi) at different levels, we employ backpropagation using

RMS prop optimizer with learning rate of 0.0001 and a decay set to 1e−6. We use a

batch size of 128 and run training for 200 epochs with sufficient data augmentation

including horizontal flips, width, and height shifts. As shown in Fig. 4.9, our design

optimization algorithm converges at five levels in all cases. Therefore, for each pre-

trained DNN, we have to train four classifiers: 200 training epochs for only classifier

layer, which has a very negligible overhead (around two percent of the computational

resources needed to train the full network).

Multi-objective BO for LEANet models. For obtaining the confidence threshold

vectors to trade-off energy and accuracy, we employ different mutli-objective BO

algorithms. We compare our UnPAc algorithm with the state-of-the-art PESMO

method [54].

We employ the PESMO code from the BO library Spearmint1. We use a GP

based statistical model with squared exponential (SE) kernel in all our experiments.

The SE kernel is defined as κ(x, x′) = s· exp(−∥x−x′∥2
2σ2 ), where s and σ correspond to

scale and bandwidth parameters. These hyper-parameters are estimated after every

1https://github.com/HIPS/Spearmint/tree/PESM
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10 function evaluations. We initialize the GP models for both objective functions by

sampling initial points at random from a Sobol grid. This initialization procedure

is same as the one in-built in the Spearmint library. We run for a maximum of 200

iterations.

Pareto hypervolume (PHV) metric. PHV is a commonly employed metric to

measure the quality of a given Pareto front [123]. PHV is defined as the volume

between a reference point and the given Pareto front. After each BO iteration t (or

number of function evaluations), we report the difference between the hypervolume

of the ideal Pareto front (T ∗) and hypervolume of the estimated Pareto front (Tt) by

a given algorithm: PHVdiff = PHV (T ∗) − PHV (Tt). Since PHVdiff represents a

regret function, when comparing algorithms, the smaller the better (i.e., the estimated

Pareto front is closer to the ideal Pareto front).

4.4.2 Results and Discussion

In this section, we first present the performance of a variant of state-of-the-art

method based on SlimNets followed by a discussion of improvements achieved by

optimized LEANets. Subsequently, we explain the results of our design optimiza-

tion methods including its convergence behavior and comparison of different multi-

objective BO algorithms (UnPAc vs. PESMO). Finally, we present fine-grained anal-

ysis of optimized LEANet models.
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(a) Conv-MNIST (b) Conv-CIFAR10 (c) Conv-SVHN

(a) VGG-MNIST (b) VGG-CIFAR10 (c) VGG-SVHN

(a) MobileNet-MNIST (b) MobileNet-CIFAR10 (c) MobileNet-SVHN

Figure 4.5: Energy and accuracy of SlimNets with 5 different widths for each DNN

and dataset. For CIFAR10, we use [0.55x 0.625x 0.75x 0.875x 1x] and for

SVHN/MNIST, we use [0.5x 0.625x 0.75x 0.875x 1x]
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Energy and accuracy trade-offs with varying fraction of channel. We employ

each classifier at different levels of LEANet as shown in Table 4.1 to obtain the

corresponding energy and accuracy values by performing static inference over all the

testing examples. This gives us one energy and accuracy values pair for each level. It

is easy to see that this setting is conceptually similar to slimmable neural networks

(SlimNet) with fixed width values without the corresponding training to optimize its

accuracy averaged for all widths [119]. For example, SlimNet(0.5x) corresponds to

neural network with a fraction of 50% channels. Figure 4.5 shows the energy and

accuracy trade-offs obtained using SlimNets with different widths. In this case, the

trade-off is obtained at five discrete points as per the widths shown in Table 4.1

for different datasets. We present the energy and accuracy trade-off patterns for

different datasets and pre-trained DNN models. SlimNet(Conv/SVHN): From

width 1.0x to 0.875x, we can see that accuracy drops by 2% and energy reduces

by 35%. Similarly, from width 0.875x to 0.75x, accuracy drops by 8% and energy

reduces by 65% w.r.t SlimNet(1.0x). SlimNet(MobileNet/SVHN): We see a 2.5%

drop in accuracy and 35% gain in energy when we move from width 1.0x to 0.875x.

SlimNet(MobileNet/CIFAR10): For a difficult dataset like CIFAR10, from width

1.0x to 0.875x, we can see that accuracy drops by 8.5% and energy reduces by 38%.

Similarly, from width 0.875x to 0.75x, accuracy drops by 22% and energy reduces

by 65% w.r.t SlimNet(1.0x). SlimNet(VGG) and dataset MNIST also shows similar
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DNN/Dataset Percentage of evaluations

VGG [SVHN/MNIST/CIFAR10] 1.25%

MobileNet [SVHN/CIFAR10] 1.25%

MobileNet [MNIST] 6.25%

Table 4.2: Results of UnPAc algorithm in terms of the percentage of candidate threshold

vectors (w.r.t total evaluations by scalarization-based BO) evaluated to reach

convergence.

trends. In summary, we see significant gain in energy and relatively smaller loss in

accuracy as we decrease the width in SlimNet irrespective of the difficulty of dataset.

Optimized LEANet vs. SlimNets. Figure 4.6 shows the comparison of optimized

LEANet and SlimNets as per the five level widths shown in Table 4.1. We compare

them in terms of the Pareto front for energy and accuracy trade-offs. We can see

that optimized LEANet outperforms SlimNets in terms of the achievable trade-offs

for all cases. When compared to SlimNets, LEANets achieve a more fine-grained

trade-off between energy and accuracy by varying the threshold vectors employed to

make classification decisions. We observe that LEANets reach the same accuracy

values as SlimNet(1.0x) with a significant gain in energy. On the SVHN dataset,

LEANet(MobileNet) and LEANet(VGG) achieve around 35% and 45% gain in en-
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(a) Conv-SVHN (b) Conv-MNIST (c) Conv-CIFAR10

(d) VGG-SVHN (e) VGG-MNIST (f) VGG-CIFAR10

(g) MobileNet-SVHN (h) MobileNet-MNIST (i) MobileNet-CIFAR10

Figure 4.6: Energy and accuracy trade-off results comparing optimized LEANet and Slim-

Nets of different widths.
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ergy for achieving the maximum possible accuracy, i.e., SlimNet(1.0x). For CIFAR10,

the corresponding energy gains are around 10% and 40% respectively. We see a sim-

ilar trend with LEANet(ConvNet) and MNIST datasets. We observe that the energy

gains we get with MNIST and SVHN are higher than those with CIFAR10. The

significant energy gains using optimized LEANet is explained by the fact that many

easy images are predicted at lower levels and only hard images are classified at higher

levels. Remarkably, our LEANet based approach is able to get energy savings even on

MobileNet, which is hand-designed to save energy. In figure 4.10, we show the gains

in inference time obtained using optimized LEANets in comparison with SlimNets

baseline and observe a similar trend as energy.

Energy and accuracy trade-off with optimized LEANets. Optimized LEANets

can achieve significant energy gain for small loss in accuracy. Figure 4.7 shows the

configurations that achieve 0.5%, 1.0%, 2.0%, and 5.0% accuracy loss for VGG and

MobileNet to determine their energy gains for SVHN and CIFAR10 datasets. For

SVHN, a simple dataset, we see energy gain of 56% and 50% with accuracy loss of

1% for LEANet(VGG) and LEANet(MobileNet) respectively. For CIFAR10, a more

complex dataset, the corresponding energy gains are 40% and 22% respectively. Sim-

ilarly, for a 2% loss of accuracy, we see around 31% to 61% gain in accuracy for

LEANets across different DNN and dataset combinations. The energy gains range
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(a) VGG-SVHN (b) VGG-CIFAR10

(c) MobileNet-SVHN (d) MobileNet-CIFAR10

(e) Conv-SVHN (f) Conv-MNIST

Figure 4.7: Energy gain with different amounts of accuracy loss (0.5%, 1%, 2%, 5%) for

optimized LEANet models.
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from 39% to 70% for a 5% loss in accuracy. In summary, our approach using LEANet

significantly reduces the energy consumption with small loss in accuracy when com-

pared to pre-trained DNNs, i.e., SlimNets(1.0x).

Optimized LEANet performance on ImageNet dataset. To demonstrate the

performance of LEANets on large datasets, we compare the MobileNet performance

on ImageNets. In Figure 4.12 (a), we present the energy and accuracy value pairs for

each level for the fractions [0.5x 0.625x 0.75x 0.875x 1x]. Similar to small datasets,

from width 1.0x to 0.875x, the accuracy drops by 2% resulting in a energy gain of

35%. From width 0.875x to 0.75x, the accuracy drops by another 2.5% for a energy

gain of 30%, thus producing significant gain in energy for relatively small loss in

accuracy. In Figure 4.12 (c), we show the comparison of optimized LEANet and

SlimNets as per the five level widths shown in Table 4.1 in terms of Pareto front of

the energy and accuracy trade-offs. Similar to other datasets, optimized LEANets

not only offer fine-grained trade-off between energy and accuracy, but also reaches

the same accuracy values as SlimNet (1.0x) with significant gain in energy. In Figure

4.12 (d), we show the gains in inference time obtained using optimized LEANets and

observe a similar trend as energy. Finally, in Figure 4.12 (b), we present the results

for significant energy gain for small loss in accuracy.
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(a) VGG-SVHN (b) VGG-MNIST

(c) VGG-CIFAR10 (d) MobileNet-SVHN

(e) MobileNet-MNIST (f) MobileNet-CIFAR10

Figure 4.8: Results comparing multi-objective BO algorithms UnPAc and PESMO to find

the Pareto set of threshold vectors.
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(a) Conv-SVHN (b) Conv-MNIST (c) Conv-CIFAR10

(d) VGG-SVHN (e) VGG-MNIST (f) VGG-CIFAR10

(g) MobileNet-SVHN (h) MobileNet-MNIST (i) MobileNet-CIFAR10

Figure 4.9: Results of optimised LEANet with 2 levels [0.5x 1.0x], 3 levels [0.5x 0.75x

1x], 4 levels [0.5x 0.625x 0.875x 1x], 5 levels [0.5x 0.625x 0.75x 0.875x 1x] for

different DNN and dataset combinations.
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Estimating classifier thresholds. We first compare the efficiency of multi-objective

BO algorithms with a scalarization based single-objective BO approach. We com-

bine the energy and accuracy into a single objective using a scalarization parameter

(α ∈ [0, 1]); and run single-objective BO algorithm with ten different values of α

in the increments of 0.1 until convergence. To achieve the same Pareto front, our

multi-objective BO algorithm (UnPAc) takes only 2-7% of the total evaluations of

candidate threshold vectors taken by single-objective BO as shown in Table 4.2.

We now compare UnPAc with PESMO, the state-of-the-art multi-objective BO

method. Figure 4.8 shows the PHV difference as function of the number of threshold

vectors evaluated by the algorithms. We make the following observations: 1) UnPAc

converges within 25 evaluations for all DNN and dataset combinations, except for

MobileNet and MNIST, where it converges in 125 evaluations. 2) UnPAc convergences

to a smaller regret value when compared to PESMO, resulting in better Pareto front

for energy and accuracy trade-off. Since UnPAc is consistently shown to be better

than PESMO, we will show all our results using UnPAc algorithm.

Memory requirement for optimized LEANets. Since inference in LEANets

occur incrementally across levels until the confidence threshold to make classification

decision, we need to store intermediate computations to be reused across levels. In

Table 4.3, we present the total memory required by the two optimized LEANets,
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(a) Conv-SVHN (b) Conv-MNIST (c) Conv-CIFAR10

(d) VGG-SVHN (e) VGG-MNIST (f) VGG-CIFAR10

(g) MobileNet-SVHN (h) MobileNet-MNIST (i) MobileNet-CIFAR10

Figure 4.10: Time and accuracy trade-off results comparing optimized LEANet and Slim-

Nets of different widths.
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LEANets Memory (MB) Num Layers

VGG19 22 19

MobileNet 42 28

Table 4.3: Memory requirement of optimised LEANet inference on Odroid board for Im-

ageNet dataset.

namely, VGG19 and MobileNet, to perform inference for ImageNet dataset on Odroid

board. An Odroid board has a 2GB DDR memory. The presented memory results

correspond to the setting when the prediction for a given input example is made

at the last level of the optimized LEANet (worst case). From the results, we can

see that the memory requirement is proportional to the number of layers in the

network. A 19 layer VGG network consumes 21MB of memory and the 28 layer

MobileNet consumes 41 MB of memory respectively. Recall that optimized LEANets

make adaptive predictions depending on the hardness of the input examples: easy

examples will be classified at lower levels (large fraction) and only a small number of

hard examples will classified at higher levels (small fraction). Therefore, the memory

overhead will be significantly smaller than the presented results for a large fraction

of input examples. Overall, the memory overhead of LEANets to improve energy-

efficiency and inference time is negligible.

Convergence of LEANets optimization. As explained in Section 4.3, our iter-

ative optimization approach considers LEANet with increasing levels and stops at
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convergence. We employ the Pareto hypervolume indicator (PHI) metric to define

the convergence criterion: the difference between PHI of Pareto fronts of two consec-

utive levels l and l + 1 is very small. Table 4.1 shows the number of levels L and

the fraction of channels at different levels when LEANet optimization approach con-

verges for each pre-trained DNN and dataset pair. Figure 4.9 shows the convergence

phenomenon of LEANets for all combinations of DNN and dataset pairs. LEANet

approach is parameterized by the number of levels. For a fixed number of levels (say

L), a candidate threshold vector for each of the L-1 classifiers gives a concrete predic-

tion engine. By executing this prediction engine on a set of input images, we can get

the corresponding accuracy and energy consumed: a point on the normalized EDP

vs. accuracy plot. For a fixed number of levels (say L), by varying the threshold

vectors, we get different accuracy and energy values. The Pareto curve corresponds

to the dominant solutions in the energy and accuracy trade-off space obtained by the

UnPAC algorithm. Therefore, we get one Pareto curve for a fixed number of levels L.

We make the following observations: 1) Going from two to three levels of LEANet,

we see a significant improvement in the achievable energy and accuracy trade-off. 2)

As we move beyond level three, the improvements are reduced and converge in at

most five levels. This is a practically beneficial result that shows that we can apply

our design optimization approach to large-scale DNNs.

LEANet with varying accuracy. We perform fine-grained analysis to under-
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Accuracy Norm. EDP T4 T3 T2 T1

0.864 0.998 1.0 1.0 1.0 1.0

0.859 0.851 0.985 0.880 1.0 1.0

0.849 0.742 0.734 1.0 0.836 0.999

0.836 0.706 0.787 0.981 0.690 0.578

0.801 0.607 0.416 0.922 0.971 0.868

0.758 0.556 0.058 0.952 0.947 0.500

0.725 0.442 0.067 0.457 0.967 0.967

0.595 0.366 0.016 0.958 0.817 0.256

0.477 0.212 0.862 0.849 0.206 0.749

0.442 0.177 0.017 0.958 0.014 0.736

0.334 0.133 0.991 0.856 0.985 0.065

Table 4.4: Results of Pareto front obtained using LEANet(MobileNet) with five levels

on CIFAR10 dataset. We show the candidate threshold vectors for variables

T1, T2, T3, and T4 obtained by UnPAC to achieve different energy and accuracy

trade-offs.
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(a) % images predicted w/ levels (b) Prediction time

Figure 4.11: Results for LEANet(MobileNet/CIFAR10) w/ varying accuracy loss.

stand how LEANet achieved the above shown energy gains. We present this analysis

for LEANet(MobileNet/CIFAR10) noting that analysis for other cases show similar

trends.

The energy gains can be explained by understanding how many images from the

testing set are classified at different levels. We make the following observations from

Figure 4.11(a). With accuracy loss of 50%, almost all the images are predicted at

level 1 as the simplest classifier consumes the least energy. As the accuracy loss

decreases, the number of images predicted by level 2, 3, 4, and 5 slowly increase to

achieve better accuracy. The key observation is that with accuracy loss of 1%, unlike

SlimNet (1.0x) where all the images get predicted at Level 5, we see that the 10000

images are distributed as 5512, 2768, 1453, 193, and 74 images across Levels 5, 4, 3,
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(a) Energy and accuracy of SlimNets with 5

different widths

(b) Energy gain with different amounts of

accuracy loss (0.5%, 1%, 2%, 5%)

(c) Energy and accuracy trade-off optimized

LEANet and SlimNets

(d) Time and accuracy trade-off optimized

LEANet and SlimNets

Figure 4.12: Optimized LEANets performance for large DNN MobileNet using ImageNet

dataset.
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2, and 1 respectively. Since roughly 45% images are predicted using a lower level,

optimized LEANet models are able to achieve significant energy gains.

From Figure 4.11(b), we observe that the average prediction time gradually in-

creases with decrease in accuracy loss, which is explained by more and more images

getting predicted at higher levels. With accuracy loss of 35%, the prediction time of

inference is 55% lesser when compared to the pre-trained DNN and with a accuracy

loss of 5%, we save around 25% in prediction time. Therefore, in scenarios, where we

require real-time predictions, we can trade-off the accuracy of LEANet for the target

time-bound constraints.

Table 4.4 shows a sample Pareto front of LEANet(MobileNet) with five levels on

CIFAR10 dataset. It shows the candidate threshold vectors for variables T1, T2, T3, T4

obtained by UnPAC algorithm.
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CHAPTER 5. PETNET: POLYCOUNT AND ENERGY

TRADE-OFF NETWORKS FOR PRODUCING 3D

OBJECTS FROM IMAGES

In this chapter, we discuss an instance of adaptive GCN inference, namely PETNet

approach [63] which extends the pre-trained Pixel2Mesh network [113]. Below we

explain the background on 3D object shape prediction from color images application

and use of GCNs, how the PETNet adaptive inference is optimized, and present some

experimental results for the PETNet approach.

Figure 5.1: Virtual (left) and Augumented (right) reality applications
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5.1 Background and Preliminaries

In this section, we provide the background on graph convolution networks applied

to 3D object shape generation.

3D Mesh is the structural descriptor of a 3D object consisting of polygons/faces

in 3D computer graphics and animation. It employs reference points in X, Y , and

Z axes to define shapes with height, width, and depth. The mesh is a collection of

vertices, edges, and polygons/faces. A vertex is a single point in a 3D coordinate

space. An edge is a straight line segment connecting two vertices. A face/polygon

is a flat surface enclosed by edges (typically triangles) that describes the shape of a

3D object. Polycount is defined as the total number of polygons/faces found in a 3D

object shape. In Fig. 5.2 (left: a), we see a sample 3D model in the form of a 3D

ellipsoid object represented as a mesh using triangles. The ellipsoid objects (a) and

(c) have 156 and 628 vertices respectively and show that finer details are captured

better with increased polycount.

Graph convolution network layer. As mentioned above, 3D mesh is a collection of

vertices, edges, and faces that defines the shape of a 3D object. It can be represented

by a graphM = (V , E ,F), where V is the set of N vertices in the mesh, E = {ei}Ei=1

is the set of M edges, and F = {fi}Ni=1 are the feature vectors attached to vertices.

Fig 5.2 (right) illustrates a graph convolutional layer defined on graph with vertices

A, B, C, and P as f l+1
p = w0f

l
p +

∑
q∈N (p) w1f

l
q, where f l

p ∈ Rdl , f l+1
p ∈ Rdl+1
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Figure 5.2: Left: Graph Unpooling operation (a) Input ellipsoid object (156 vertices),

(b) Edge based unpooling operation, and (c) Output unpooled ellipsoid ob-

ject (628 vertices). Right: Graph convolution operation on vertex P with

neighboring vertices A, B, and C.

are the feature vectors for vertex P before and after the convolution operation, and

N (p) is the set of neighboring vertices of P, namely A, B, and C; w0 and w1 are

the learnable parameter matrices of size dl × dl+1 that are applied uniformly to all

vertices. Note that w1 is shared for all edges, thus the above-mentioned convolution

operation works on nodes with different vertex degrees. In our case, the feature

vector fp associated with vertex P is the concatenation of the 3D vertex coordinates,

features encoding 3D shape, and features learned from the input color image (if they

exist). Running convolution operation updates the features, which is equivalent to

performing a deformation on a mesh.

G-ResNet. The GCN layer predicts the new location and 3D shape features for

each vertex, which requires an efficient exchange of information between vertices.

In this work, we employ a deep network with shortcut connections called G-ResNet
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[74]. Each mesh deformation block in the proposed PETNet architecture (Fig. 5.3)

contains a G-ResNet block that employs 14 graph residual convolutional layers with

128 channels and each layer producing a new 128-dimensional 3D feature vector. In

addition to output features, there is a branch that applies an extra graph convolutional

layer to features of the last layer and outputs the 3D coordinates of a vertex. In short,

G-ResNet blocks are computationally expensive.

Graph unpooling layer starts from a mesh with few vertices and adds more vertices

to increase the capacity of the neural model to capture finer details of 3D object

shapes. A vertex is added at the center of each edge and is connected with both end-

points of the edge (Fig 5.2 [left:a]). The three new vertices are also connected to form

a triangle (dashed lines in Fig 5.2 [left:b]). Consequently, we create four new triangles

for each triangle in the original mesh, and the number of vertices are increased by the

number of edges in the original mesh. This edge-based unpooling operation uniformly

up-samples the vertices as shown in Fig. 5.2 [left:b]. In the PETNet architecture (Fig.

5.3), the number of vertices increases with the level number. Unpooling layer and

G-ResNet block increases the computational complexity across the levels of PETNet.

Accuracy metric. Since we do not have the reference 3D mesh object during in-

ference, we project the 3D object generated by PETNet back to a 2D image. Sub-

sequently, we predict the closeness of this projected image to the input image using

Intersection over Union (IoU) metric. IoU is defined as the ratio of the area of in-
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tersection to the area of the union over the two input binary masks. We employ IoU

score to measure the accuracy of generated 3D object shapes by PETNet.

Figure 5.3: High-level overview of PETNet architecture.

5.2 PETNet Architecture

In this section, we provide a detailed description of our proposed Polycount-Energy

Trade-off Network (PETNet) architecture. First, we provide the motivation behind
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the PETNet approach. Second, we formally describe the PETNet model and the

associated inference procedure. Third, we describe the optimization procedure for

configuring PETNet to achieve particular energy and IoU score trade-off.

5.2.1 Motivation

Unlike DNN architectures (e.g. MobileNet[1]) which addresses the problem of

image classification on mobile platforms, there are no existing solutions to port GCNs

used for AR/VR applications on mobile platforms. As shown in Fig 5.9, simple

3D objects have smooth boundaries and would require less number of polygons to

approximate the object, whereas complex objects have sharp edges and concave hulls

requiring a large number of polygons. Our main motivation is to design a network

architecture such that simple objects would use a smaller GCN model while complex

objects would require a larger GCN model. PETNet can be interpreted as a wrapper

approach that takes a pre-trained P2M model as input and reuses the learned weights

to automatically build a multi-level GCN, where level number is proportional to

the complexity of the corresponding model. The key idea is to progressively go

from simpler to complex model only if needed thereby reusing the computation of

lower levels at higher levels to achieve significant reduction in energy-consumption

and execution time with negligible loss of accuracy. Figure 5.9 (a) and (b) shows

some sample images from our experiments that are predicted at level 2 and level 3
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respectively using PETNet. 3D objects generated at level 2 have simpler shapes like

cuboid, whereas those generated at level 3 have complex shapes with sharp curvatures.

These results provide evidence for the key intuition behind our proposed PETNet

approach. However, formalizing this intuition poses significant algorithmic challenges

for predicting structured outputs (e.g., 3D shapes).

5.2.2 PETNet Model

As illustrated in Fig. 5.3, a L level PETNet extends the pre-trained P2M network

[113]. It takes an input RGB image and predicts a progressive 3D mesh object

in camera coordinates of increasing polycount vis-a-vis vertices. The architecture

consists of the following components:

(1) Image feature block takes an input RGB image as input and produces a

perceptual feature vector of 1280 dimensions. It employs a 2D Convolutional Neural

Network (CNN) based on VGG16 [107]. This perceptual feature vector acts as an

input to mesh deformation block at all L levels.

(2) Mesh deformation block employs a graph convolution network (GCN) based

ResNet, which progressively deforms an ellipsoid mesh object into the desired 3D

object. The deformation block takes as input the structured output and perceptual

features from the previous block. This layer is discussed in detail in the P2M network

[113]. Each deformation blocks Mi is made of (a) Perceptual pooling maps the 1280
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dimensional feature vector to each graph vertex to produce 1408 features; (b) G-

ResNet deforms the input mesh to produce a 128 dimensional feature vector; and (c)

Unpooling layer increases the number of vertices across L levels.

Figure 5.4: Illustration of comparator procedure. (a:top) is the input image; (b:top) shows

the generated 3D mesh shape object at level 1, 2, 3; (a and b:bottom) shows

the binary mask generated using the input image and the generated 3D mesh

shape object at levels 1, 2, 3 respectively. Comparator module at each level

takes the input image and generated mesh (top) as input and generates the

binary mask, and employs it to calculate the IoU score

(3) Comparator block takes the 3D mesh object generated at each level of the

previous block and compares it with the input reference image to calculate the IoU
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score. In an image classification setting the predicted output value is representative of

how close it is to a particular class. For a structured output case, this is not available

directly. The IoU score calculated by the comparator block denotes the similarity

between the 3D object and the reference input image and is used as a threshold value

to terminate early. For a L level network, there are L-1 comparator blocks. Each

comparator block Ci has a threshold value Ti, which determines whether to terminate

at this particular level based on the IoU score.

Below we describe the various steps involved in calculating the IoU score. Inputs:

The comparator block receives two inputs. The generated 3D mesh object (In1) from

the mesh deformation block at each level [Fig. 5.4(b:top)]. It consists of the (x, y, z)

coordinates of all the vertices that make up the mesh. The input reference image

((In2) [Fig. 5.4(a:top)]. Each comparator block does the following operations to

calculate the IoU score using the above inputs. Step 1: The input (In1) is converted

from 3D coordinates to a 2D image by projecting the (x, y, z) values using camera

parameters. Step 2: The projected 2D image is converted to a binary mask by

filtering the image using a morphological closing operator. This operator merges

two nearby projected points to form a single region to create a binary mask of the

projected points as shown in Fig. 5.4 (b:bottom). Step 3: The input (In2) is passed

through a simple threshold-based segmentation operator to produce the reference

binary image as shown in Fig 5.4 (a:bottom). Step 4: The two binary images
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produced in steps 2 and 3 are then used to calculate the IoU score. Step 5: If the

IoU score at level i is greater than the threshold Ti, we terminate the deformation

and produce the output 3D shape object. Otherwise, we proceed to the next level at

i+ 1.

Multi-level inference. Given a PETNet with all its parameters fully specified, in-

ference computation for a new input image x is performed as follows. We sequentially

go through the PETNet starting from level 1. At each level i, we generate a 3D mesh

object using the mesh deformation block Mi. Then the intermediate comparator

block Ci computes the IoU score IoUi from the generated 3D mesh object and the

reference image x. If the IoU score for prediction meets the threshold Ti or we reach

the final level of L, we terminate and return the 3D mesh object for the given input

image x.

Multi-objective Bayesian optimization formulation. We set the number of

levels L as the number of graph unpooling layers in the base P2M network. We

formulate the problem of estimating the threshold vector (T1, T2, · · · , TL−1) ∈ T in

the framework of multi-objective Bayesian Optimization (BO): the input space T

of all candidate threshold vectors is [0, 1]L−1; and energy and IoU score over the

validation set Va and target mobile platform MP as the two unknown objective

functions. USeMO [11] and MESMO [12] are state-of-the-art methods to solve multi-

objective BO problems. They iteratively select the input (T1, T2, · · · , TL−1) ∈ T to
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approximate the true Pareto set for energy and IoU score objectives.

5.3 Experiments and Results

In this section, we first describe the experimental setup and then discuss the

results of PETNets along different dimensions.

5.3.1 Experimental Setup

Hardware setup. All experiments were performed by deploying GCN models on

an ODROID-XU4 board, which is an Octa-core heterogeneous platform that is popular

in current mobile devices. However, our methodology can be employed for other

platforms such as Samsung Exynos 5422 MPSoC. We execute GCN models using

the Python Tensorflow framework. We employ SmartPower2 to measure power and

compute the average power over total execution time.

Dataset and GCN training We test PETNet based approach as shown in Fig. 5.3

using the pre-trained Pixel2Mesh (P2M) network, which contains three graph unpool-

ing layers. Therefore, we consider a PETNet architecture with three levels, generating

a mesh of 156, 628 and 2466 vertices respectively. We ran extensive experiments using

the ShapeNet dataset [2] for the performance evaluation of PETNets. This dataset

contains rendering images of 50k 3D shape objects belonging to 13 object categories.

For a fair comparison, we employ the same training/validation/testing split as in

Choy et al.[21].
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Energy objective. Energy consumption of PETNet models is measured in terms

of the normalized energy-delay product (EDP). EDP =
∑

P ∆t · T, where ∆t is the

time interval at which we record the power P and T is the total execution time. As

power is measured at a regular interval, we simply calculate EDP as EDP = Pavg ·

T 2 . This value is normalized with EDP of the pre-trained P2M network. We use

EDP and energy interchangeably in the discussion of our results. However, all our

presented results are for EDP unless specified otherwise.

Accuracy objective. The accuracy of 3D shapes from the PETNet method is

measured using the IoU score.

Multi-objective BO for PETNet models. For obtaining the threshold vectors

to trade-off energy and IoU score, we run the state-of-the-art method USeMO [11]

for 200 iterations.

5.3.2 Results and Discussion

In this section, we first present the performance of the state-of-the-art method

based on Pixel2Mesh (P2M) followed by a discussion of improvements achieved by

optimized PETNets across different dimensions. We also show qualitatively how

optimized PETNet performs across different levels. Finally, we present a fine-grained

analysis of optimized PETNet models.

IoU score, energy, and inference time across PETNet levels. We test the pre-
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Figure 5.5: Left: Energy and inference time of PETNet at levels 1, 2 and 3. Right: IoU

score of different 3D objects namely, lamp, watercraft, car, and cellphone

generated at levels 1, 2 and 3 respectively.

trained P2M network at levels 1, 2 and 3 producing 156 (simple), 628, 2466 (complex)

vertices respectively, i.e. we make all the predictions at each level of PETNet. This

experiment will characterize the IoU and energy/time trade-off achieved by PETNet

at each level. The performance of the base P2M network is characterized by the

PETNets finest level (i.e., level 3). In Figure 5.5 (a) we show the energy and time

metrics of PETNet at levels 1, 2 and 3 respectively. Figure 5.5 (b) shows the respective

IoU score for different object types like a lamp, watercraft, car, and cellphone. Lamp:

From level 3 to level 2, we can see that IoU score drops by 0.05 and EDP reduces

by 80%. The inference time drops by 56%. Similarly, from level 2 to level 1, IoU

score drops by 0.1% and EDP reduces by 15% w.r.t level 3. The inference time drops
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by 16%. Watercraft, car, and cellphone: we achieve similar EDP and inference

time gains for an IoU score drop of 0.048, 0.06, and 0.033 respectively from level 3 to

level 2. From levels 2 to 1 we observe an IoU score drop of 0.09, 0.11 and 0.12. On

average, the IoU score drops 0.059 from levels 3 to 2 and 0.12 from levels 2 to 1.

In summary, we see a significant gain in energy and inference time with a relatively

small loss in IoU score when we move from level 3 to level 1 in PETNets. This

corroborates our hypothesis that we can save a significant amount of energy if we

are able to select simpler networks for large fraction of easy 3D objects and complex

networks for hard 3D objects that are relatively small. We also observe that simple

object shapes like cars and cellphones have better IoU scores in comparison to complex

object shapes like lamps and watercraft.

Figure 5.6: Optimized PETNet energy (left) and inference time (right) trade-off with IoU

score by varying the threshold vector across different 3D objects

Optimized PETNet for IoU score. In the above results, we saw that across levels,
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PETNet takes significantly more energy for a small improvement in the IoU score.

Based on this observation, optimized PETNets obtain a more fine-grained trade-off

between EDP and IoU score by varying the threshold vectors T employed to make

the exit decisions. Unlike the P2M network which just has a single IoU-energy value

(no input-specific adaptive predictions), in Figure 5.6 (left) we show the performance

of optimized PETNet in terms of the Pareto front for EDP and IoU trade-offs.

Figure 5.7: Energy (left) and inference time (right) with different amounts of IoU score

loss [0.5%, 1.0%, 2.0%, and 5.0%] for optimized PETNet models.

Furthermore, in Figure 5.6 (left), we compare the performance across different

3D object shapes. Simple objects like cars and cellphones exhibit a better Pareto

front when compared to complex objects like lamps and waterfront. The IoU energy

trade-off using optimized PETNet is explained by the fact that many easy 3D object

shapes terminate at lower levels and only hard objects are passed to higher levels.
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In Figure 5.6 (right), we show the gains in inference time obtained using optimized

PETNets across different object types. In this case, too, we observe a similar trend

as energy.

EDP / inference time and IoU score trade-off with optimized PETNet. In

comparison to the fixed performance of the P2M network, optimized PETNet can

achieve significant energy gain for a small loss in the IoU score. Figure 5.7 (left)

shows the configurations that achieve 0.5%, 1.0%, 2.0%, and 5.0% IoU score loss to

determine their EDP gains for different object types of the ShapeNet dataset. For

a negligible loss of 0.005 IoU score, we obtain 14%-18% EDP gain across different

object types. This increases to 20%-54% for an IoU loss of 0.01 to 0.02 respectively.

The EDP gain values shoot up to 80%-87% for an IoU score loss of 0.05. Figure

5.7 (right) shows the inference time gains obtained for similar IoU score losses. We

get around 8%, 15%, 25%, and 55% inference time speedup for IoU score losses of

0.005, 0.01, 0.02, and 0.05 respectively on the full ShapeNet dataset. In this case,

too, we observe similar patterns like energy for different object types. In summary,

our approach using PETNet significantly reduces energy consumption with negligible

loss in the IoU score.

PETNet with varying IoU score loss. We perform fine-grained analysis to un-

derstand how PETNet achieved the above shown energy gains. The energy gains can

be explained by understanding how many images from the testing set are predicted at
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Figure 5.8: 3D shapes predicted at levels 1, 2, and 3 by varying IoU score loss.

different levels. We make the following observations from Figure 5.8. With IoU score

loss of 0.4, almost all the images are predicted at level 1 as the smallest polycount

consumes the least energy. As the IoU loss decreases, the number of images predicted

by level 2 and 3 slowly increase to achieve better accuracy. The key observation is

that with accuracy loss of 0.05, we see that the total 210050 objects are distributed

as 120342 and 89708 objects across level 2 and 3 respectively. Since roughly 57%

objects are predicted using a lower level, optimized PETNets model is able to achieve

significant energy gains.

Qualitative Analysis. Figure 5.9 shows some sample 3D object shapes that are

predicted at level 2 and level 3 using optimized PETNet. We make following obser-

vations: 1) Objects terminating at level 2 are simple with basic shapes like cuboid;

2) Objects terminating at level 3 are complex with concave shapes and sharp edges;
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Figure 5.9: 3D objects predicted at level 2 (left) and 3 (right) using PETNet.

These results demonstrate how adaptive PETNets use smaller polycount models for

simple objects and larger polycount models for complex objects.
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CHAPTER 6. SETGAN: SCALE AND ENERGY

TRADE-OFF GANS FOR IMAGE APPLICATIONS

In this chapter we discuss an instance of adaptive GAN inference, namely SET-

GAN [62] across different scales operating over a client-server architecture for image-

editing applications. The SETGAN approach allows us to update the end-user image

editing application progressively as and when better models are available. Below we

explain the background on application tasks and GANs, how the SETGAN adaptive

inference is optimized, and present some results to demonstrate the effectiveness of

SETGAN.

6.1 Background and Preliminaries

Generative Adversarial Networks. A GAN for unconditional image synthesis

involves a generator G which takes a noise vector z as input and outputs a synthetic

image that closely resembles the image from a real data set. As shown in figure

6.1, a GAN architecture primarily is made of two networks: a) Generator network,

and b) Discriminator network. The generator G learns to generate plausible data by

taking a random noise vector z, and outputs synthetic data G(z); a discriminator D

learns to distinguish the generator’s fake data G(z) from real data. The discriminator

penalizes the generator for producing implausible results. It takes an input x or G(z)
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Figure 6.1: General structure of a Generative Adversarial Network, where the generator

G takes a noise vector z as input and outputs a synthetic sample G(z), and

the discriminator D takes the synthetic input G(z) or the real sample X as

inputs and predict whether they are real or fake.

and outputs a probability D(x) or D(G(z)) to indicate whether it is synthetic or from

the true data distribution, as shown in Figure 6.1.

Training GAN Models. The principle to train the generator and discrimina-

tor is to form a two-player min-max game, where the generator G tries to gen-

erate realistic data to fool the discriminator and discriminator D tries to distin-

guish between real and fake data. The value function to be optimized is as follows:

minGmaxD V (D,G) = Ex∼pdata(x)[log (D(x))] + Ez∼pz(z)[log (1 − D(G(z)))], where

pdata(x) denotes the true data distribution and pz(z) denote the noise distribution.

When training begins, the generator produces fake data, and the discriminator quickly

learns to tell that it’s fake. As training progresses, the generator gets closer to pro-
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ducing samples that can fool the discriminator. Finally, if generator training goes

well, the discriminator gets worse at telling the difference between real and fake. It

starts to classify fake data as real, and its accuracy decreases.

Discriminator: The discriminator in the GAN model is a classifier. It tries to

distinguish real data from fake data created by the generator. The discriminator’s

training data comes from two sources: a) Real data samples, which act as positive

examples during training; and b) Fake data samples created by the generator, which

act as negative examples during training. The discriminator connects to two loss

functions. During discriminator training, the discriminator ignores the generator’s

loss and just uses the discriminator loss. The discriminator classifies both real data

and fake data from the generator. The discriminator’s loss penalizes the discriminator

for misclassifying a real sample as fake or a fake sample as real. The discriminator

updates its weights from the discriminator’s loss.

Generator: The generator part of a GAN learns to create fake samples to make

the discriminator classify its output as real. Generator’s training requires tighter

integration between the generator and the discriminator. The portion of the GAN

that trains the generator includes: a) random input; b) generator network, which

transforms the random input into a data sample; c) discriminator network, which

classifies the generated data as real or fake; and d) discriminator output generator

loss, which penalizes the generator
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Structural Similarity Index Metric . For predicting the perceived quality of

synthesized images in SETGAN approach, we employ SSIM score that measures the

similarity between two images. The SSIM between two images x and y is given by

equation SSIM(x, y) = (2µxµy+C1)+(2σxy+C2)

(µ2
x+µ2

y+C1)(σ2
x+σ2

y+C2)
where µx, µy are the means and σx, σy

are the variances of images x, y; and σxy is the covariance of x and y.

6.2 SETGAN Framework

Motivation. Image editing applications such as Paint2Image and super-resolution

are time-sensitive and utilize an image synthesis operation as part of their workflow.

Deploying large GAN models on mobile platforms requires a lot of resources in terms

of computation, energy, and memory. Multi-image GANs such as PGAN [75] have

a) a huge number of parameters, and b) take a long time to train for new image

datasets (usually in days). Single-image GANs such as SinGAN [100] have relatively

less number of parameters, but they still take a long time (in order of hours) to train

a given input image.

In the SETGAN framework, we propose a single-image multi-scale GAN model,

which automatically adapts the number of scales based on the complexity of input

image in a client-server architecture. The key idea is to use a small number of scales

for a simple image (which consists of small structures and textures) while using more

number of scales for complex images (which has large objects). We were able to
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achieve 56% gain in energy for a loss of 3%-12% SSIM accuracy. Furthermore, we

propose a novel training methodology to reduce the training time by a factor of 4X.

We adapt the SinGAN model [100] since it has a relatively small number of param-

eters making it an ideal candidate for image editing applications in a client-server

architecture. In the following section, we describe our solution in detail. First, we

describe the SETGAN model including generator, discriminator, training procedure,

and inference methodology. Second, we discuss the client-Server architecture includ-

ing the different modes of operation of the GAN model for image editing applications.

Finally, we instantiate our SETGAN framework for diverse image editing application

workflow.

6.2.1 SETGAN Model, Training, and Inference

Multi-scale SETGAN Model. Our model tries to capture the internal statistics

of the given single-image X for training. The unconditional image generation task

is conceptually similar to the conventional GAN setting. However, instead of the

whole image, we train the model using patches of a single image. As shown in the

Figure 6.2, we create a pyramid of images from the given input X: X0, · · · , XN ,

where Xi is a down-sampled version of X (X0 being the coarsest image) by a factor

rN−i, for some r > 1. The multi-scale SETGAN model consists of a list of generators

for each down-sampled version of X, G0, · · · , GN , a associated list of discriminators
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Figure 6.2: Illustration of SETGAN approach with multi-scale GAN model. An abstract

model with N scales from coarsest-scale GAN 0 to finest-scale GAN N . Each

scale consists of a generator Gi, giscriminator Di, and a quality estimator

SSIMi to decide when to terminate. Generator Gi takes a noise vector Zi

and up-scaled real input Xi−1 and generates a fake image Fi. Discriminator

Di takes Fi or real inputXi as input and classifies them as fake or real. SSIMi

checks whether SSIM between the generated fake image Fi and the original

input image X is greater than the user-specified threshold T .
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D0, · · · , DN and Quality estimators SSIM0, · · · , SSIMN−1.

Parallel Training Algorithm. Image-editing applications are time-sensitive. How-

ever, the SinGAN model based on which we have developed our SETGAN model

employs a serial training procedure, which is very expensive. Starting from the

coarsest-scale, SinGAN uses the fake image Fi−1 generated at the end of training

of the previous stage as input for the next generator Gi’s input. In contrast, in

SETGAN, we employ the scaled (real) input image Xi−1, which allows us to perform

embarrassingly parallel training of models at all scales. The key reason we are able

to do this is as follows: Fi−1 is an approximation of Xi−1 and this approximation

helps us in achieving 4x reduction in training time with negligible loss in quality of

generated images. Since the goal of image editing tasks is for the generated image to

be similar and not exact to the original input image, this negligible loss in quality is

not noticeable.

Training Procedure. Given an input image X and a target SSIM threshold for early

exit T , we perform the training of models at all N scales in parallel. Each scale i is

made of a generator Gi, discriminator Di, and a quality estimator SSIMi. They take

as input 1) Xi, the image the generator has to match for this scale i; 2) Up-scaled

Xi−1, the image from a coarser scale Xi−1 up-scaled by a factor r; 3) Gaussian noise

vector Zn. Each generatorGi is responsible for producing realistic image samples w.r.t

the patch distribution in the corresponding image Xi. As described in the background



121

Figure 6.3: SETGAN inference: The unconditional image synthesis starts at coarsest scale

G0 taking noise vector Z0 as input and passes through all generators upto

finest scale GN .

section, the generator achieves this goal via adversarial training, where Gi learns to

fool an associated discriminator Di, which attempts to distinguish patches in the

generated samples from patches in Xi. At the end of adversarial training, quality

estimator SSIMi checks whether SSIM between the generated fake image Fi and

the original input image X is greater than the early exit threshold T or not. If this

condition is satisfied, then we terminate the training procedure at this scale and use

the models from 0, 1, · · · , i for our inference.

a) Generator: The generator at scale 0 is purely generative, i.e., G0 maps Gaus-

sian noise Z0 to an image sample F0. However, in all other scales, Gi maps the

Gaussian noise Zi to produce the incremental image from Xi−1 to that at Xi. All
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the generators have a similar architecture as shown in figure 6.1. Each generator is

a fully-convolutional network with 5 convolution blocks. Each block is made of three

layers namely (3x3) Conv layer, BatchNorm followed by a ReLU, except for the last

block whose activation is Tanh. It starts with 32 kernels per block at the coarsest-

scale and increases by a factor of 2 for every 4 scales. The noise vector is added to

the scaled image prior to being fed to the convolution blocks, ensuring that the GAN

does not disregard the noise.

b) Discriminator: Each generator Gi works with a corresponding Markovian

discriminator Di that classifies the overlapping input patches as real or fake. A

WGAN-GP loss [50] is used to increase the training stability. The architecture of Di

is similar to that of the generator as shown in figure 6.1. However, the last block

at each scale includes neither normalization nor activation. It is followed by a mean

error block which averages the error over entire image.

min
Gn

max
Dn

Ladv(Dn, Gn) + α ∗ Lrec(Gn) (6.1)

Equation 6.1 describes the training loss of the ith scale GAN model. Ladv repre-

sents the adversarial loss.

Inference Algorithm. As shown in figure 6.3, the image generation starts at the

coarsest-scale generator G0 which takes input as noise vector Z0 and produces a

generated image Y0. At each scale i > 0, generator Gi takes the image generated



123

at a coarser scale Yi−1 and noise vector Zi as input and produces a finer image Yi.

This procedure passes through all the generators upto the scale determined by the

training algorithm to meet the quality threshold. However, as shown in figure 6.3,

during the inference stage, we do not use the real images. Because the generators are

fully convolutional, we can generate images of arbitrary size and aspect ratio at test

time (by changing the dimensions of the noise maps).

6.2.2 Client-Server Architecture

The training procedure of GAN models involve thousands of iterations of forward

and backward propagation steps, which are very compute-intensive and are usually

executed using a GPU.

Hence, training GANs on mobile platforms is impractical. Furthermore, any image

manipulation task involves repeated editing of the given input image until the user

is satisfied (i.e., repeated inference calls). The Naive client-server architecture

involves sending the image to be edited to the server and for every image edit, the

server sends the edited image back to the client: all training and inference calls are

executed on the server. This causes network latency to the user after every edit and

increases the client-server memory bandwidth for every edit operation. Hence, we

propose a modified client-server architecture to efficiently use SETGAN for image-

editing applications and discuss three different modes of operation.
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Figure 6.4: Client-server architecture: Describes the three modes of operation for the

SETGAN Framework (a) SinGAN Baseline, (b) Parallel training, and (c)

Progressive update.
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[Mode 1] SinGAN Baseline: As shown in figure 6.4 (a), we employ the existing

SinGAN model for our training. This is our baseline mode. In SinGAN, the training

happens sequentially from the coarsest scale G0 to the finest scale GN for any given

input image. Once the training is complete, all the models are sent together in a one-

shot to the edge device.Unlike the default mode, since the entire model is available

on the mobile device, repeated inference happens without the network latency and

does not increase the client-server memory bandwidth for every edit operation

[Mode 2] Parallel Training: As shown in figure 6.4 (b), in this mode of operation,

we employ SETGAN model for our training. Since the SETGAN models at all the

scales are trained in parallel and the best scale to meet the quality threshold is de-

termined automatically, it takes significantly less time to train SETGAN for a given

input image. Once training is complete, all the models from G0 to Gbest (best ≤ N)

are sent in a one-shot to the edge device.

[Mode 3] Progressive Update: As shown in figure 6.4 (c), in this mode of opera-

tion, we use SETGAN model for our training similar to mode #2. However, we send

the trained model to the edge device as and when it’s training is complete. Since

we do not wait for the full training to be complete, we can start using our image-

editing application with the available models which provide a coarser output. The

generated images would be refined as and when finer-scale models are available. This

mode reduces the time to start the editing application and results in a better user
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experience.

6.2.3 SETGAN for Image Applications

In this section, we discuss the use of the SETGAN framework for various image-

editing applications. Recall that a trained SETGAN generator model is capable of

producing images with the same patch distribution as that of the single training

image. Different image manipulation tasks can be performed by injecting (a down-

sampled version of) an image into the pyramid of generators at some scale i ≤ N .

When this image passes through the various generators, it produces an output that

matches the patch distribution to that of the training image. We can perform diverse

image manipulations by using an appropriate scale at which we introduce the image.

Key Steps. On receiving an input image for editing, the following sequence of

steps are performed: 1) The image is sent to the server; 2) Using the input image,

the SETGAN model is trained for the optimal number of scales (say best); 3) The

trained SETGAN generator models (G0, · · · , Gbest) are sent to the edge device; and 4)

Using the input image and the received SETGAN model, we can repeatedly perform

various image-editing operations on the edge device. We instantiate SETGAN for

three diverse image-editing applications that will be employed in our experimental

evaluation.

Super-resolution: Given a low-resolution (LR) input image, we want to scale it up
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by a factor s to produce a high-resolution image as shown in Fig 6.10. To support a

scale factor s, we train SETGAN for N scales such that r = k
√
s. During inference,

we up-sample the LR image by a factor r. This along with the noise vector is fed to

the last generator GN . We repeat k times to obtain the final high-resolution output.

Paint2Image: Given a clip-art image as input, we want to generate a photo-realistic

image as output (illustrated in Fig 6.12). The clip-art image is an LR representation

of the output image we need to generate. Hence, we downsample the clip-art image

and feed it to one of the coarse scales like G1 or G2. This preserves the global structure

of the painting while texture and high-frequency information matching the original

image generates realistic photos.

Harmonization: As shown in Fig 6.11, the Eiffel tower object is pasted onto to image

which looks like a painting. Harmonization is the process of realistically blending this

pasted object with the background image. In this case, we inject a down-sampled

version of the composite image at the inference stage. Unlike paint2image that works

from the coarse scales, we inject the image at the finer scales of the generator in

this application. Scales GN−1, GN−2, GN−3 generally provide a good balance between

preserving the object’s structure and transferring the background texture.



128

6.3 Experimental Setup

Hardware setup. All our experiments were performed by deploying SETGAN on

an ODROID-XU4 board, [93]. We employ SmartPower2 [108] to measure power.

GAN training on server. We set the minimal dimension at the coarsest-scale to

25px, and choose the number of scales N such that the scaling factor r is as close

as possible to 4/3. For all the results (unless mentioned otherwise), we re-sized the

training image to the maximal dimension 256 px. Thus, the maximum number of

scales N is 9. At each scale, the weights of the generator and discriminator are

initialized randomly. We train each scale for 2000 iterations. In each iteration, we

alternate between three gradient steps for the generator and three gradient steps for

the discriminator. We employ the Adam optimizer with a learning rate of 0.0005

(decreased by a factor of 0.1 after 1600 iterations), and momentum parameters β1=

0.5 and β2= 0.999. The weight of the reconstruction loss α is set to 10, and the weight

of the gradient penalty in the WGAN loss is set to 0.1. All Leaky-ReLU activations

have a slope of 0.2 for negative values. The training uses an RTX 2080Ti GPU.

Datasets. We employed the Berkeley Segmentation Database (BSD) [90] and Places

[120] datasets consisting of 500 and 10 million images respectively. Our approach

works with one image at a time.

Energy objective. Energy consumption of SETGAN is measured in terms of the

normalized energy-delay product (EDP). EDP =
∑

P ∆t ·T , where ∆t is the time
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GAN Type Memory (MB) Training Time (Hours)

PGAN 3343 24.00

SinGAN 98 1.00

SETGAN 98 0.25

Table 6.1: Training time and memory required for optimized SETGAN and state-of-the-

art GAN models.

interval at which we record the power P and T is the total execution time. As power

is measured at a regular interval, we simply calculate EDP as EDP = Pavg · T 2 . This

value is normalized with EDP of SETGAN with all scales (0 to N).

Accuracy objective. The accuracy of the unsupervised photo-realistic image gen-

eration from the SETGAN method is measured using the Structural Similarity Index

Metric (SSIM) score which measures the quality of the generated images similar to

how human perceive images unlike metrics such as Peak Signal-to-Noise Ratio.

6.4 Results and Discussion

In this section, we compare the performance of SETGAN with state-of-the-art

GAN models to demonstrate its effectiveness.
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Figure 6.5: Effect of training time with the number of scales for a single image GAN:

(Left) Baseline SinGAN training time across scales and (Right) Optimized

SETGAN training

6.4.1 SETGAN vs. PGAN and SinGAN

We compare the memory and training time of SETGAN in comparison to state-of-

the-art GAN models: PGAN, a multi-image GAN [75], and SinGAN, a single-image

GAN [100].

Results for memory and training time. PGAN uses multi-scale GAN models

and is trained on specific datasets with thousands of images. SinGAN performs serial

training using a single image. Table 6.1 shows the results comparing SETGAN with

PGAN and SinGAN. SETGAN and SinGAN models consume 34x less memory than

the PGAN model. This is expected because PGAN needs to store the information

regarding different kinds of images used for training, whereas SETGAN and SinGAN
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Figure 6.6: Energy and accuracy trade-off of SETGAN for unconditional photo-realistic

image synthesis on mobile platform: (Left) Normalised EDP consumed at

different scales of SETGAN generator network and (Right) SSIM Accuracy of

different images across scales 6, 7, and 8.

architectures are intended to be trained only on a single image. Furthermore, the

SETGAN memory can be further optimized with progressive update mode as dis-

cussed later. The average training times of PGAN, SinGAN, and SETGAN are 24

hours, 1 hour, and 15 minutes respectively. Thus, PGAN and SinGAN are not suit-

able for time-sensitive image editing applications. The fast training time of SETGAN

is due to our proposed parallel training.

Effect of parallel training. In Fig. 6.5 (left), we show the time required to train

the baseline SinGAN model of scales 0 to 8. We can see that training time increases

gradually with the number of scales (4 mins for the coarsest scale and 60 mins to

train for all scales) due to serial training. On the other hand, due to parallel training,
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Figure 6.7: Inference time with SETGAN for photo-realistic image synthesis on mobile

platforms: Variation of inference time from scales 2 to 8.

in fig. 6.5 (right) SETGAN can train all nine scales in 15 minutes resulting in 4X

improvement over SinGAN. All these results demonstrate that SETGAN is much

better suited for image-editing applications

6.4.2 SETGAN Inference across Scales

The SETGAN model trained on the server is sent to the client (mobile device).

In this section, we discuss the results of SETGAN inference on mobile platforms.

Accuracy of Generator vs. Normalised EDP. As shown in Fig. 6.6, we compare

the accuracy and energy consumed by the generator network of SETGAN at different

scales. Recall that we can control the overall compute of SETGAN using the quality

estimate threshold of T . By varying this threshold, we can exit early reducing the
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Figure 6.8: Performance of SETGAN with client-server architecture. Variation of infer-

ence model memory across scales from 0 to 8.

number of scales used by the image-editing application. We compare the normalized

EDP and SSIM accuracy trade-off by a varying threshold of T . In figure 6.6(left), we

plot the normalized EDP consumed for different scales by averaging across all images

in the dataset. We observe that there is a 56% reduction in energy from scale 8 to

scale 7. For the same reduction in energy, in fig. 6.6 (right), we see a drop of 6%,

10%, 3%, 13%, 7% in SSIM accuracy for different images such as balloon, volcano,

birds, cows, and lightning. Similarly, the energy drops by another 8% form scale

7 to 6 for a drop of 10%, 1%, 4%, 9%, 8% in SSIM accuracy respectively. We see

that for simple images such as balloons and birds (contains smaller structures), we

see a very small drop in accuracy across scales, thereby use a fewer number of scales

and consumes 56% lesser energy. GANs are generally evaluated for the capability to



134

generate varied images and finding good metrics is still a open problem within ML

community. Hence, qualitative results in the form of generated images are shown.

Although we use SSIM to measure the closeness with the input image, the drop in

SSIM accuracy does not reflect the true performance of GANs. Therefore, similar to

prior work, we will present qualitative results for our SETGAN in subsequent sections

as user-experience is more important for image-editing applications.

Inference Time. In this part, we discuss the time taken for running the SETGAN

generator model across different scales. As shown in fig 6.7, we see that there is a

30% drop in inference time from scale 8 to scale 7. We also see another 10% drop in

inference time from scale 7 to scale 6. From these results, we make the observation

that by reducing the number of scales of a generator, we will be able to get faster

feedback for different image-editing applications.

6.4.3 Performance of Client-Server Architecture

In this section, we study the properties of the SETGAN model which enable

the different modes of the client-server architecture. The latency for the client-server

architecture depends on the memory of the SETGAN generator model across different

scales sent from the server to the mobile device. We discuss the impact of memory

size of the model for the different modes of the SETGAN architecture.

Parallel training (Mode #2). In this mode, after training the SETGAN model,

the entire model is sent to the mobile device. In Fig. 6.8, we show the inference
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Figure 6.9: Memory consumed by SETGAN generator at each scale: (Left) Memory size

of parameters and (Right) Compressed memory size.

memory required for the optimal number of scales of the SETGAN generator model.

The generator for the finest-scale (8) takes 4MB of memory. The latency to transfer

a 4MB model is minuscule when compared to the training time. From the Fig. 6.8,

we see a 44% decrease in memory of the SETGAN generator model from scale 8 to

scale 7 and another 19% decrease in memory when we go from scale 7 to scale 6

Progressive update (Mode #3). is a mode where we use the image-editing

application as and when a model is available for use. The latency also depends on

the model size. In fig. 6.9 (Left), we show the memory consumed by the SETGAN

generator at each scale. Generator model at scale 0-3 consumes the smallest memory

across all scales (0-8). This is because the first four scales of the network consist of

32 filters. The number of filters doubles for every four scales, i.e., scales 4-7 consists

of 64 filters and scale 8 consists of 128 filters. This explains the memory consumed at
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the respective scales. Also, the compressed memory consumed at each scale reduces

the memory size by a factor of 3x as shown in Fig. 6.9 (Right). The latency for

a model to be used on the mobile device depends on the training time as shown in

figure 6.5 and the time it takes to transfer the trained model to the mobile. For the

first four scales, the models will be trained at around the same time of 4-5 minutes

and the size of the model is 120KB each, which could be transferred in negligible

time. For a progressive update mode of operation, we could start using the generator

model from 8 minutes at scale 6, and successively use the scale 7 model at 10 minutes

and use all the 8 scales at 16 minutes. Thus, the image-editing application could be

improved adaptively to further reduce the overall usage performance by another 50%.

Hence, the overall running time from “send for training” to “Editing” depends on

three major components: a) The Training time ranges between 4-16 minutes based

on scale; b) The model transfer time which is negligible due to small model and image

size; and c) The Inference time (from the previous section) of around 15-25 seconds

for each edit operation. However, the user interaction depends only on the inference

time since the user starts editing only after the model is received on the edge device.
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Figure 6.10: Super-resolution: Colloseum image scaled by a factor of 4x generated using

(top) SETGAN model and (bottom) Bilinear interpolation.

6.4.4 Image-Editing Applications

We now discuss the quantitative and qualitative results of SETGAN for four

diverse image-editing applications.

Super-resolution. We train a Colosseum image using the SETGAN model for

super-resolution applications. Using the trained SETGAN model, we would be able

to scale the low-resolution image for different scales such as 2x, 4x, 8x, etc. In Fig.

6.10, we scale the 256x256 image by 4x factor to produce 1024x1024 output images

using SETGAN model (top) and bilinear interpolation (bottom). Since the bilinear

interpolation is not a generative model, the output image is blurred. However, the
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Figure 6.11: Harmonization: Starry-night image with space ship object overlayed. From

top-left to bottom-right: (1) Input overlayed image, and (2)-(8) Images gen-

erated by injecting image at scales (2) to (8) in the SETGAN model.

image generated using SETGAN has sharp and crisp features since it uses the features

at lower-resolution to generate features at higher-resolution. The same effect is seen

even at higher scale factors of 8x and 16x.

Harmonization. In figure 6.11, we show the results of using a trained SETGAN

model in harmonizing (blending) a spaceship object overlayed on a starry-night im-

age. The images (2)-(8) are generated by injecting images at scales (2) to (8) of the

SETGAN model. Based on the scale at which the image is introduced, we find that

the degree of blending between the foreground and background image varies. An

image generated from coarser scales (2)-(4), both the shape and the texture of the

foreground spaceship is matched with the background starry-night painting. How-
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Figure 6.12: Paint2image: Cows image used for clip-art based editing. From top-left to

bottom right: (1) Input clip-art image, (2)-(6) Images generated by injecting

image at scales (1) to (5) in the SETGAN model.

Figure 6.13: Editing: Stones image used for image editing. From top-left to bottom right:

(1) Input edited image, (2)-(6) Images generated by injecting image at scales

(1) to (5)
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ever, for the finer scales (5)-(7), the shape of the spaceship is maintained while the

texture of the spaceship alone is matched to the background. The energy consumed

by the editing process also scales accordingly based on the scale at which the image is

injected. Furthermore, in this application, the generative process is done only around

the region of the spaceship and the energy consumed is reduced accordingly only for

that smaller part of the image.

Paint2Image. In figure 6.12, we show the results of feeding the clip-art image for

the cows’ image trained on the SETGAN model. We feed the clip-art image from

scales (1) to (5) of the SETGAN model. We can see high-quality features generated

by the SETGAN model when injected at coarser scales (1) and (2).

Editing In Fig. 6.13, we show the results of feeding the edited stone image trained on

the SETGAN model. We feed the stone image from scales (1) to (5) of the SETGAN

model. For an editing application, feeding the image at the coarsest scale (1) creates

artifacts. This is because, at the coarse-scale, it loses the local information. However,

higher scales (4)-(5) does not have enough detail. Scales (2)-(3) seems to be the

optimal scale for the right set of details.

From the above results, we can observe that we need to choose the appropri-

ate scale based on the image manipulation task. Fig. 6.6 (top) shows the energy

consumed by SETGAN across different scales. The energy spent by different applica-

tions depends on the scale at which these applications operate. A Paint2Image task
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Figure 6.14: Random images generated using SETGAN model with early exit and parallel

training: (Top) Colosseum and (Bottom) Lightning. Leftmost image is the

input source image while the next two are the random images.

operating at the coarsest scale spends the largest energy while the Harmonization

task operating at the finer scales consumes the least energy. Since the editing task

works at the intermediate scale, it consumes energy between the above two tasks.

The energy spent also depends on the size of the image on which the application acts

on. Applications like Harmonization and Editing are localized and hence, spend less

energy when compared to paint2image and super-resolution which work on the whole

image.
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Figure 6.15: Comparing random images of Starry Night generated using SinGAN (left

two) and SETGAN (right two) model

6.4.5 Qualitative Analysis

Fig. 6.14 shows some random images generated using SETGAN model. The

leftmost image is the source image while the images at center and right are the

random images generated using SETGAN model. The overall characteristics of the

source image are maintained by our model, but still, the images are different. This can

be seen from the number and shape of the windows of the Colosseum image. However,

similar to the source image, we see the reflections of the building in the water in all

the three images. A similar observation could be made in the number of stars and the

swirls in the starry-night image. Fig. 6.14 shows the random images generated using

the early exit with a reduced number of scales. Even with the reduced number of

scales, we see that the images maintain the same characteristics as the un-optimized

SETGAN while providing around 56% reduction in energy. Fig. 6.15 compares images

generated using our baseline SinGAN and those generated with SETGAN. The image

characteristics are similar between SinGAN and SETGAN generated images.
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CHAPTER 7. CONCLUSIONS

Edge AI is an enabling technology for many emerging real-world applications by

using deep neural networks for automated predictions and decisions. This disser-

tation highlighted the various challenges to develop energy-efficient Edge AI, and

discussed a adaptive framework to achieve a desired trade-off between accuracy, en-

ergy, and latency. The key insight is performing adaptive inference depending on the

hardness of input examples by solving what to compute and how to compute in a

data-driven manner [65]. We illustrated the generality of this framework by provid-

ing three qualitatively different instantiations namely, convolutional neural networks

(CNN), graph convolutional networks (GCN), and generative adversarial networks

(GAN). The results demonstrated the effectiveness of the framework to achieve sig-

nificant savings in energy and inference time with little to no loss in prediction ac-

curacy. However, for some deep learning models where the data flow is not linear

(e.g., transformers), our framework may not be directly applicable and will require

some changes to incorporate adaptability. Future work includes studying the design

optimization [37, 77, 72, 32, 28, 27, 34] of Resistive random-access memory (ReRAM)-

based processing-in-memory accelerators [117, 3, 70] and monolithic 3D integration

[91, 69, 23, 81, 82] for Edge AI ; studying more general multi-level inference where the

routing paths need not be serial between different levels; and cross-layer co-design so-
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lutions to exploit additional opportunities to develop energy-efficient and secure Edge

AI.

7.1 Summary of Contributions

In this section we enumerate summary of each instantiation of our framework and

how we could extend these ideas in the future

• First, motivated by the challenges associated with performing inference using

deep neural networks on resource-constrained embedded systems, we studied a

adaptive solutions based on the formalism that allows us to employ classifiers

of varying complexity depending on the hardness of input examples. Our pro-

posed optimization algorithm to automatically configure pre-trained network

for a specified trade-off between accuracy and energy consumption on a tar-

get hardware platform is very effective. Results on four different C2F Nets for

image classification show that using optimized C2F Net we can significantly

reduce the overall energy with no loss in accuracy when compared to a base-

line solution, where predictions for all input examples are made using the most

complex network. Though we have demonstrated the method for four nets

this idea could be extended to other architectures like MobileNets [56]. Fu-

ture directions include evaluation of our framework on deep networks such as
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MobileNets [56], studying automated approaches for C2F nets design, hetero-

geneous architectures for embedded systems in the context of inference using

deep networks, machine learning based approaches for software and hardware

co-design using C2F Nets, and dynamic power management to further improve

the overall energy-efficiency.

• Next, we introduced a novel approach based on the LEANets formalism to

trade-off energy and accuracy of inference on mobile platforms at runtime. We

also propose a principled algorithm to find optimized LEANet configurations by

reusing pre-trained neural networks. Our LEANet based approach can be used

as a complementary wrapper for other existing techniques to deploy deep neu-

ral networks on mobile devices. Results with optimized LEANets constructed

from pre-trained networks including VGG and MobileNet on image classifica-

tion datasets including ImageNet show significant energy gains with minimal

loss in accuracy. Future work includes applying dynamic resource management

techniques [76] [86] and task mapping optimization based on machine learning

[109, 73, 32] to further improve the power and thermal trade-offs in hetero-

geneous mobile SoCs; and generalizing the LEANets formalism from simple

classification tasks to structured output prediction tasks [35, 36, 80, 31, 84] in-

cluding semantic segmentation and scene understanding that commonly arise

in robotics and autonomous driving applications.
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• Then, we introduced and evaluated a novel approach referred as PETNets to

generate 3D object shapes from color images using graph convolution networks

on resource-constrained mobile platforms. Our results show that optimized

PETNets can achieve 20 to 37 percent gain in energy for negligible loss in IoU

score when compared to SOTA Pixel2Mesh networks. Future work includes

applying dynamic resource management techniques [102, 99] to further improve

the power and thermal trade-offs for deployment on heterogeneous SoCs.

• Finally, we propose and evaluate a new SETGAN framework to trade-off energy

and scale of inference using single-image GANs for image manipulation tasks

on resource-constrained mobile platforms. The key novelty includes a multi-

scale GAN model that can be efficiently trained for each input image using a

parallel algorithm and allows efficient inference by automatically selecting the

appropriate scale to achieve a user-specified quality threshold. Our results show

that optimized SETGAN models can achieve a 56 percent gain in energy for

negligible loss in SSIM accuracy and 4x speedup in training when compared

to state-of-the-art SinGAN models. Future work includes applying dynamic

resource management techniques [102, 99, 103, 89, 26] to further improve the

energy-efficiency

Future work includes extending our framework to more complex deep learning

models such as transformers and applications for time-series domain [13, 14, 15, 57].
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One could consider improving our current instantiations of the adaptive inference

framwork such as improving the performance of 3D shape generation by using multi-

ple images as input or extend image synthesis by using stable diffusion models. From

the hardware perspective, we could complement our implementation by using approx-

imate computing, dynamic resource management, and energy harvesting [58, 115] to

further improve the power and thermal trade-offs which we did not address in our ex-

periments. We can also consider designing hardware accelerators [78] for the specific

application workloads [106] using BO [29, 30] and consider hardware-aware model

pruning methods [71, 94] to improve performance and energy-efficiency.



148

BIBLIOGRAPHY

[1] A. Howard et al. MobileNets: Efficient convolutional neural networks for

mobile vision applications. CoRR, abs/1704.04861, 2017.

[2] Angel X. Chang et al. ShapeNet: An information-rich 3D model repository.

CoRR, abs/1512.03012, 2015.

[3] Aqeeb Iqbal Arka, Biresh Kumar Joardar, Janardhan Rao Doppa, Partha Pra-

tim Pande, and Krishnendu Chakrabarty. ReGraphX: NoC-enabled 3D het-

erogeneous ReRAM architecture for training graph neural networks. In DATE,

2021.

[4] Michal Irani Assaf Shocher, Nadav Cohen. ”zero-shot” super-resolution using

deep internal learning. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018.

[5] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Information-

theoretic multi-objective Bayesian optimization with continuous approxima-

tions. CoRR, abs/2009.05700, 2020.

[6] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value en-

tropy search for multi-objective Bayesian optimization with constraints. CoRR,

abs/2009.01721, 2020.



149

[7] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Multi-fidelity

multi-objective Bayesian optimization: An output space entropy search ap-

proach. In AAAI conference on Artificial Intelligence (AAAI), 2020.

[8] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Uncertainty

aware search framework for multi-objective Bayesian optimization with con-

straints. CoRR, abs/2008.07029, 2020.

[9] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Output Space

Entropy Search Framework for Multi-Objective Bayesian Optimization. JAIR,

2021.

[10] Syrine Belakaria et al. Machine learning enabled fast multi-objective optimiza-

tion for electrified aviation power system design. In IEEE Energy Conversion

Congress and Exposition, 2020.

[11] Syrine Belakaria et al. Uncertainty-aware search framework for multi-objective

Bayesian optimization. In AAAI Conference on Artificial Intelligence, 2020.

[12] Belakaria et al. Max-value entropy search for multi-objective Bayesian opti-

mization. In NeurIPS, 2019.

[13] Taha Belkhouja and Janardhan Rao Doppa. Analyzing deep learning for time-



150

series data through adversarial lens in mobile and iot applications. IEEE

Trans. Comput. Aided Des. Integr. Circuits Syst., 39(11):3190–3201, 2020.

[14] Taha Belkhouja and Janardhan Rao Doppa. Adversarial framework with cer-

tified robustness for time-series domain via statistical features. Journal of

Artificial Intelligence Research (JAIR), 73:1435–1471, 2022.

[15] Taha Belkhouja, Yan Yan, and Janardhan Rao Doppa. Training robust deep

models for time-series domain: Novel algorithms and theoretical analysis. In

Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI), pages 6055–

6063. AAAI Press, 2022.

[16] Urs Bergmann, Nikolay Jetchev, and Roland Vollgraf. Learning texture man-

ifolds with the periodic spatial GAN. CoRR, abs/1705.06566, 2017.

[17] Caffe-HRT. https://github.com/OAID/Caffe-HRT, 2018. Online; Accessed 29

March,2018.

[18] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Using dataflow to optimize energy

efficiency of deep neural network accelerators. IEEE Micro, 2017.

[19] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, and

Ling Li. Dadiannao: A machine-learning supercomputer. In Proceedings of

MICRO, pages 609–622, 2014.



151

[20] François Chollet. Xception: Deep learning with depthwise separable convolu-

tions. 2016.

[21] Christopher Bongsoo Choy et al. 3D-R2N2: A unified approach for single and

multi-view 3D object reconstruction. In ECCV, 2016.

[22] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neu-

ral networks with weights and activations constrained to +1 or -1. CoRR,

abs/1602.02830, 2016.

[23] Sourav Das, Janardhan Rao Doppa, Partha Pratim Pande, and Krishnendu

Chakrabarty. Monolithic 3D-enabled high performance and energy efficient

network-on-chip. In ICCD, pages 233–240, 2017.

[24] CIFAR10 Dataset. https://www.cs.toronto.edu/∼kriz/cifar.html, 2009. On-

line; accessed 29 March 2018.

[25] MNIST Dataset. http://yann.lecun.com/exdb/mnist/. Online; accessed 29

March 2018.

[26] Aryan Deshwal, Syrine Belakaria, Ganapati Bhat, Janardhan Rao Doppa, and

Partha Pratim Pande. Learning pareto-frontier resource management policies

for heterogeneous socs: An information-theoretic approach. In (DAC), 2021.



152

[27] Aryan Deshwal, Syrine Belakaria, and Janardhan Rao Doppa. Bayesian opti-

mization over hybrid spaces. In ICML, 2021.

[28] Aryan Deshwal, Syrine Belakaria, and Janardhan Rao Doppa. Mercer features

for efficient combinatorial Bayesian optimization. In AAAI, 2021.

[29] Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa, and Dae Hyun Kim.

Bayesian optimization over permutation spaces. In Thirty-Sixth AAAI Con-

ference on Artificial Intelligence, AAAI 2022, pages 6515–6523. AAAI Press,

2022.

[30] Aryan Deshwal and Janardhan Rao Doppa. Combining latent space and struc-

tured kernels for bayesian optimization over combinatorial spaces. In Advances

in Neural Information Processing Systems 34: Annual Conference on Neural

Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,

virtual, pages 8185–8200, 2021.

[31] Aryan Deshwal, Janardhan Rao Doppa, and Dan Roth. Learning and infer-

ence for structured prediction: A unifying perspective. In Sarit Kraus, editor,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial

Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 6291–

6299. ijcai.org, 2019.

[32] Aryan Deshwal, Nitthilan Kannappan Jayakodi, Biresh Kumar Joardar, Ja-



153

nardhan Rao Doppa, and Partha Pratim Pande. MOOS: A multi-objective

design space exploration and optimization framework for NoC enabled many-

core systems. ACM TECS, 2019.

[33] Ruizhou Ding, Zeye Liu, R. D. Shawn Blanton, and Diana Marculescu. Quan-

tized deep neural networks for energy efficient hardware-based inference. In

Proceedings of ASP-DAC, pages 1–8, 2018.

[34] Janardhan Rao Doppa. Adaptive experimental design for optimizing combi-

natorial structures. In IJCAI, pages 4940–4945, 2021.

[35] Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Hc-search: A learn-

ing framework for search-based structured prediction. Journal of Artificial

Intelligence Research, 50:369–407, 2014.

[36] Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Structured prediction

via output space search. Journal of Machine Learning Research, 15(1):1317–

1350, 2014.

[37] Janardhan Rao Doppa, Justinian Rosca, and Paul Bogdan. Autonomous de-

sign space exploration of computing systems for sustainability: Opportunities

and challenges. IEEE Design and Test, 36(5):35–43, 2019.



154

[38] Aojun Zhou et al. Incremental network quantization: Towards lossless cnns

with low-precision weights. arXiv:1702.03044, 2017.

[39] Bobak Shahriari et al. Taking the human out of the loop: A review of bayesian

optimization. In Proceedings of the IEEE, volume 104, pages 148–175, 2016.

[40] Christian Szegedy et al. Going deeper with convolutions. 2014.

[41] J. Albericio et al. Cnvlutin: Ineffectual-neuron-free deep neural network com-

puting. In Proceedings of ISCA, pages 1–13, 2016.

[42] Song Han et al. Eie: Efficient inference engine on compressed deep neural

network. In Proceedings of ISCA, pages 243–254, 2016.

[43] Vivienne Sze et al. Efficient processing of deep neural networks: A tutorial

and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

[44] Wenzheng Hu et al. Fast branch convolutional neural network for traffic sign

recognition. In IEEE Intelligent Transportation Systems Magazine, volume 9,

pages 114–126, July 2017.

[45] Y. LeCun et al. Backpropagation applied to handwritten zip code recognition.

Neural computation, 1(4):541–551, 1989.

[46] Francois Fleuret and Donald Geman. Coarse-to-fine face detection. In Inter-

national Journal of Computer Vision, volume 41, pages 85–107, 2001.



155

[47] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis.

Tetris: Scalable and efficient neural network acceleration with 3d memory.

SIGARCH Computer Architecture News, 2017.

[48] Jeff Dean Geoffrey Hinton, Oriol Vinyals. Distilling the knowledge in a neural

network. NIPS Deep Learning Workshop, 2014.

[49] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative

adversarial nets. In NIPS, 2014.

[50] Ishaan Gulrajani, Faruk Ahmed, Mart́ın Arjovsky, Vincent Dumoulin, and

Aaron C. Courville. Improved training of wasserstein gans. In Isabelle Guyon,

Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.

Vishwanathan, and Roman Garnett, editors, NIPS, pages 5767–5777, 2017.

[51] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights

and connections for efficient neural networks. CoRR, abs/1506.02626, 2015.

[52] Cong Hao, Jordan Dotzel, Jinjun Xiong, Luca Benini, Zhiru Zhang, and Dem-

ing Chen. Enabling design methodologies and future trends for edge AI: spe-

cialization and codesign. IEEE Des. Test, 38(4):7–26, 2021.



156

[53] Haoqiang Fan et al. A point set generation network for 3D object reconstruc-

tion from a single image. In CVPR, 2017.

[54] Daniel Hernandez-Lobato, Jose Miguel Hernandez-Lobato, Amar Shah, and

Ryan P. Adams. Predictive entropy search for multi-objective bayesian opti-

mization. In ICML, pages 1492–1501, 2016.

[55] Hiroharu Kato et al. Neural 3D mesh renderer. In CVPR, 2018.

[56] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. CoRR,

abs/1704.04861, 2017.

[57] Dina Hussein, Taha Belkhouja, Ganapati Bhat, and Janardhan Rao Doppa.

Reliable machine learning for wearable activity monitoring: Novel algorithms

and theoretical guarantees. In Proceedings of 41st International Conference on

Computer-Aided Design (ICCAD), 2022.

[58] Dina Hussein, Ganapati Bhat, and Janardhan Rao Doppa. Adaptive energy

management for self-sustainable wearables in mobile health. In Thirty-Sixth

AAAI Conference on Artificial Intelligence, AAAI 2022, pages 11935–11944.

AAAI Press, 2022.



157

[59] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,

William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with

50x fewer parameters and <1mb model size. CoRR, abs/1602.07360, 2016.

[60] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. arxiv, 2016.

[61] Nitthilan Kanappan Jayakodi, Syrine Belakaria, Aryan Deshwal, and Janard-

han Rao Doppa. Design and optimization of energy-accuracy tradeoff networks

for mobile platforms via pretrained deep models. ACM Trans. Embedded Com-

put. Syst., 19(1):4:1–4:24, 2020.

[62] Nitthilan Kanappan Jayakodi, Janardhan Rao Doppa, and Partha Pratim

Pande. SETGAN: Scale and energy trade-off gans for image applications

on mobile platforms. In Proceedings of the 39th International Conference on

Computer-Aided Design, ICCAD ’20, New York, NY, USA, 2020. Association

for Computing Machinery.

[63] Nitthilan Kanappan Jayakodi, Janardhan Rao Doppa, and Partha Pratim

Pande. PETNet: Polycount and energy trade-off deep networks for produc-

ing 3D objects from images. In 2020 57th ACM/IEEE Design Automation

Conference (DAC), pages 1–6, 2020.

[64] Nitthilan Kannappan Jayakodi, Anwesha Chatterjee, Wonje Choi, Janard-



158

han Rao Doppa, and Partha Pratim Pande. Trading-off accuracy and energy

of deep inference on embedded systems: A co-design approach. IEEE TCAD,

37(11):2881–2893, 2018.

[65] Nitthilan Kannappan Jayakodi, Janardhan Rao Doppa, and Partha Pratim

Pande. A general hardware and software co-design framework for energy-

efficient edge AI. In IEEE/ACM International Conference On Computer Aided

Design, ICCAD 2021, Munich, Germany, November 1-4, 2021, pages 1–7.

IEEE, 2021.

[66] Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. Texture synthesis with

spatial generative adversarial networks. ArXiv, abs/1611.08207, 2016.

[67] Jhony K. Pontes et al. Image2Mesh: A learning framework for single image

3D reconstruction. In ACCV, 2018.

[68] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. CoRR, abs/1408.5093, 2014.

[69] Biresh Kumar Joardar, Aqeeb Iqbal Arka, Janardhan Rao Doppa, and

Partha Pratim Pande. 3D++: Unlocking the next generation of high-

performance and energy-efficient architectures using M3D integration. In

DATE, 2021.



159

[70] Biresh Kumar Joardar, Aryan Deshwal, Janardhan Rao Doppa, Partha Pra-

tim Pande, and Krishnendu Chakrabarty. High-throughput training of deep

CNNs on ReRAM-based heterogeneous architectures via optimized normaliza-

tion layers. IEEE TCAD, 2021.

[71] Biresh Kumar Joardar, Janardhan Rao Doppa, Hai Li, Krishnendu

Chakrabarty, and Partha Pratim Pande. Realprune: Reram crossbar-aware

lottery ticket pruned cnns. CoRR, abs/2111.09272, 2021.

[72] Biresh Kumar Joardar, Ryan Gary Kim, Janardhan Rao Doppa, Partha Pra-

tim Pande, Diana Marculescu, and Radu Marculescu. Learning-based

application-agnostic 3D NoC design for heterogeneous manycore systems.

IEEE Transactions on Computers, 68(6):852–866, 2018.

[73] Biresh Kumar Joardar, Ryan Gary Kim, Janardhan Rao Doppa, Partha Pra-

tim Pande, Diana Marculescu, and Radu Marculescu. Learning-based

application-agnostic 3d noc design for heterogeneous manycore systems. IEEE

Transactions on Computers, 68(6):852–866, 2018.

[74] Kaiming He et al. Deep residual learning for image recognition. In IEEE

CVPR, pages 770–778, 2016.

[75] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive



160

growing of GANs for improved quality, stability, and variation. In International

Conference on Learning Representations, 2018.

[76] Ryan Gary Kim, Wonje Choi, Zhuo Chen, Janardhan Rao Doppa, Partha Pra-

tim Pande, Diana Marculescu, and Radu Marculescu. Imitation learning for

dynamic VFI control in large-scale manycore systems. IEEE Transactions on

VLSI Systems (TVLSI), 25(9):2458–2471, 2017.

[77] Ryan Gary Kim, Janardhan Rao Doppa, and Partha Pratim Pande. Machine

learning for design space exploration and optimization of manycore systems. In

Proceedings of the International Conference on Computer-Aided Design (IC-

CAD), page 48. IEEE, 2018.

[78] Ryan Gary Kim, Janardhan Rao Doppa, Partha Pratim Pande, Diana Mar-

culescu, and Radu Marculescu. Machine learning and manycore systems de-

sign: A serendipitous symbiosis. Computer, 51(7):66–77, 2018.

[79] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Deep convolutional neu-

ral network inference with floating-point weights and fixed-point activations.

CoRR, abs/1703.03073, 2017.

[80] Michael Lam, Janardhan Rao Doppa, Sinisa Todorovic, and Thomas G. Diet-

terich. HC-search for structured prediction in computer vision. In IEEE Con-



161

ference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,

MA, USA, June 7-12, 2015, pages 4923–4932, 2015.

[81] Dongjin Lee, Sourav Das, Janardhan Rao Doppa, Partha Pratim Pande,

and Krishnendu Chakrabarty. Performance and thermal tradeoffs for energy-

efficient monolithic 3D network-on-chip. ACM TODAES, 23(5):60:1–60:25,

2018.

[82] Dongjin Lee, Sourav Das, Janardhan Rao Doppa, Partha Pratim Pande, and

Krishnendu Chakrabarty. Impact of electrostatic coupling on monolithic 3D-

enabled network on chip. ACM TODAES, 24(6):62:1–62:22, 2019.

[83] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. A con-

volutional neural network cascade for face detection. In Proceeding of CVPR,

pages 5325–5334, 2015.

[84] Chao Ma, F. A. Rezaur Rahman Chowdhury, Aryan Deshwal, Md Rakibul

Islam, Janardhan Rao Doppa, and Dan Roth. Randomized greedy search

for structured prediction: Amortized inference and learning. In Sarit Kraus,

editor, Proceedings of the Twenty-Eighth International Joint Conference on

Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages

5130–5138. ijcai.org, 2019.

[85] Yufei Ma, Naveen Suda, Yu Cao, Jae sun Seo, and Sarma Vrudhula. Scalable



162

and modularized rtl compilation of convolutional neural networks onto fpga.

In Proceedings of FPL, pages 1–8, 2016.

[86] S. K. Mandal, G. Bhat, C. A. Patil, J. R. Doppa, P. P. Pande, and U. Y.

Ogras. Dynamic resource management of heterogeneous mobile platforms via

imitation learning. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 27(12):2842–2854, Dec 2019.

[87] Sumit Mandal, Ganapati Bhatt, Chetan Arvid Patel, Janardhan Rao Doppa,

Partha Pratim Pande, and Umit Ogras. Dynamic resource management of

heterogeneous mobile platforms via imitation learning. IEEE TVLSI, 2019.

[88] Sumit K. Mandal, Ganapati Bhat, Janardhan Rao Doppa, Partha Pratim
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